52 research outputs found

    Copper effect on the protein composition of photosystem II

    Get PDF
    The definitive version is available at: http://www.blackwell-synergy.com/doi/full/10.1111/j.1399-3054.2000.1100419.xWe provide data from in vitro experiments on the polypeptide composition, photosynthetic electron transport and oxygen evolution activity of intact photosystem II (PSII) preparations under Cu(II) toxicity conditions. Low Cu(II) concentrations (Cu(II) per PSII reaction centre unit≤230) that caused around 50% inhibition of variable chlorophyll a fluorescence and oxygen evolution activity did not affect the polypeptide composition of PSII. However, the extrinsic proteins of 33, 24 and 17 kDa of the oxygen-evolving complex of PSII were removed when samples were treated with 300 μM CuCl2 (Cu(II) per PSII reaction centre unit=1 400). The LHCII antenna complex and D1 protein of the reaction centre of PSII were not affected even at these Cu(II) concentrations. The results indicated that the initial inhibition of the PSII electron transport and oxygen-evolving activity induced by the presence of toxic Cu(II) concentrations occurred before the damage of the oxygen-evolving complex. Indeed, more than 50% inhibition could be achieved in conditions where its protein composition and integrity was apparently preserved.This work was supported by the Dirección General de Investigación Científica y Técnica (Grant PB98-1632).Peer reviewe

    Characterizing the role of rice NRAMP5 in Manganese, Iron and Cadmium Transport

    Get PDF
    Metals like manganese (Mn) and iron (Fe) are essential for metabolism, while cadmium (Cd) is toxic for virtually all living organisms. Understanding the transport of these metals is important for breeding better crops. We have identified that OsNRAMP5 contributes to Mn, Fe and Cd transport in rice. OsNRAMP5 expression was restricted to roots epidermis, exodermis, and outer layers of the cortex as well as in tissues around the xylem. OsNRAMP5 localized to the plasma membrane, and complemented the growth of yeast strains defective in Mn, Fe, and Cd transport. OsNRAMP5 RNAi (OsNRAMP5i) plants accumulated less Mn in the roots, and less Mn and Fe in shoots, and xylem sap. The suppression of OsNRAMP5 promoted Cd translocation to shoots, highlighting the importance of this gene for Cd phytoremediation. These data reveal that OsNRAMP5 contributes to Mn, Cd, and Fe transport in rice and is important for plant growth and development

    Interaction of aluminium and drought stress on root growth and crop yield on acid soils

    Full text link
    corecore