35 research outputs found

    Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa

    Get PDF
    Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes

    Antibody isotype analysis of malaria-nematode co-infection: problems and solutions associated with cross-reactivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibody isotype responses can be useful as indicators of immune bias during infection. In studies of parasite co-infection however, interpretation of immune bias is complicated by the occurrence of cross-reactive antibodies. To confidently attribute shifts in immune bias to the presence of a co-infecting parasite, we suggest practical approaches to account for antibody cross-reactivity. The potential for cross-reactive antibodies to influence disease outcome is also discussed.</p> <p>Results</p> <p>Utilising two murine models of malaria-helminth co-infection we analysed antibody responses of mice singly- or co-infected with <it>Plasmodium chabaudi chabaudi </it>and <it>Nippostrongylus brasiliensis </it>or <it>Litomosoides sigmodontis</it>. We observed cross-reactive antibody responses that recognised antigens from both pathogens irrespective of whether crude parasite antigen preparations or purified recombinant proteins were used in ELISA. These responses were not apparent in control mice. The relative strength of cross-reactive versus antigen-specific responses was determined by calculating antibody titre. In addition, we analysed antibody binding to periodate-treated antigens, to distinguish responses targeted to protein versus carbohydrate moieties. Periodate treatment affected both antigen-specific and cross-reactive responses. For example, malaria-induced cross-reactive IgG1 responses were found to target the carbohydrate component of the helminth antigen, as they were not detected following periodate treatment. Interestingly, periodate treatment of recombinant malaria antigen Merozoite Surface Protein-1<sub>19 </sub>(MSP-1<sub>19</sub>) resulted in increased detection of antigen-specific IgG2a responses in malaria-infected mice. This suggests that glycosylation may have been masking protein epitopes and that periodate-treated MSP-1<sub>19 </sub>may more closely reflect the natural non-glycosylated antigen seen during infection.</p> <p>Conclusions</p> <p>In order to utilize antibody isotypes as a measure of immune bias during co-infection studies, it is important to dissect antigen-specific from cross-reactive antibody responses. Calculating antibody titre, rather than using a single dilution of serum, as a measure of the relative strength of the response, largely accomplished this. Elimination of the carbohydrate moiety of an antigen that can often be the target of cross-reactive antibodies also proved useful.</p

    Effect of continuous female exposure on behavioral repertoire and stereotypical behaviors in restrained male dromedary camels during the onset of the breeding season

    No full text
    This study aimed to test the effects of the three management systems on the behavioral repertoire and particularly on the incidence of stereotypical behavior in restrained camels. Five male camels were tested under the following management systems: (i) unexposed, housing in a single box (Unexpo); (ii) continuous exposure, exposed continuously to females (ConExpoF); and (iii) re-unexposed, housing again in a single box (Re-Unexpo). Every day, bulls were filmed for 30 min and videos were analyzed using a focal animal sampling ethogram. Under the ConExpoF system, camels spent the majority of time in standing with opened legs (490.0 ± 94.3 s), looking (925.0 ± 93.7 s), and walking toward the females (206.0 ± 73.4 s) and they ate and ruminated less compared to Unexpo and Re-Unexpo systems. Rumination and standing durations were significantly longer in Re-Unexpo than in Unexpo and ConExpoF management systems. When camels were continuously exposed to females, they showed few stereotypical behaviors compared to Unexpo (490.0 ± 146.1 s) and Re-Unexpo (624.0 ± 146.1 s) systems. The frequency of both total and oral stereotypes was significantly higher in Unexpo and Re-Unexpo systems compared to ConExpoF; however, no significant difference was observed among the three management systems in the frequency of locomotor stereotypes. Overall, it appears that the continuous female exposure system might be a suitable management practice for male camels used for intensive reproduction, as it decreases the manifestation of stereotypical behavior in comparison with housing for 24 h in a single box

    Development and Validation of Real-Time RT-LAMP Assays for the Specific Detection of Zika Virus

    No full text
    Two one-step real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for the detection of Zika virus (ZIKV) were developed, based on two different primer design approaches: (1) open source, based on a combination of sequence diversity clustering (phylogeny and principal component analysis) and LAVA algorithm, using 45 whole genome ZIKV sequences retrieved from the National Center for Biotechnology Information (NCBI) database; (2) standard software for LAMP primer design (Primer Explorer V4), using 59 sequences of the ZIKV 3′ UTR. The assays were firstly evaluated with External Quality Assessment panels from INSTAND e.V. (Germany) and EVD-LabNet (The Netherlands) including 4 and 12 unknown samples, respectively, and secondly, with 9 human, mosquito, and monkey ZIKV isolates from Africa (Senegal, Ivory Coast, and Uganda) and America (Brazil). The limit of detection as determined by probit analysis was 181 molecules for both RT-LAMP assays, and 100% reproducibility in the assays was obtained for 103 molecules (4/8 repetitions were positive for 102 molecules). Both assays were specific, amplifying only ZIKV RNA and not cross-detecting other arboviruses included in this study
    corecore