9 research outputs found

    Regulation of Motor Function and Behavior by Atypical Chemokine Receptor 1

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10519-014-9665-7Atypical Chemokine Receptor 1 (ACKR1), previously known as the Duffy Antigen Receptor for Chemokines, stands out among chemokine receptors for its high selective expression on Purkinje cells of the cerebellum, consistent with the ability of ACKR1 ligands to activate Purkinje cells in vitro. Nevertheless, evidence for ACKR1 regulation of brain function in vivo has been lacking. Here we demonstrate that Ackr1−/− mice have markedly impaired balance and ataxia when placed on a rotating rod and increased tremor when injected with harmaline, a drug that induces whole-body tremor by activating Purkinje cells. Ackr1−/− mice also exhibited impaired exploratory behavior, increased anxiety-like behavior and frequent episodes of marked hypoactivity under low-stress conditions. The behavioral phenotype of Ackr1−/− mice was the opposite of the phenotype occurring in mice with cerebellar degeneration and the defects persisted when Ackr1 was deficient only on non-hematopoietic cells. We conclude that normal motor function and behavior depend in part on negative regulation of Purkinje cell activity by Ackr1

    Nuclear Signs of Pre-neurodegeneration

    No full text

    One-way membrane trafficking of SOS in receptor-triggered Ras activation

    No full text
    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane-recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2:SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted membrane experiments, these Grb2-independent interactions are sufficient to retain SOS on the membrane for many minutes, during which a single SOS molecule can processively activate thousands of Ras molecules. These observations raise questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative reconstituted SOS-deficient chicken B cell signaling systems combined with single molecule measurements in supported membranes. These studies reveal an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until it is actively removed via endocytosis
    corecore