39 research outputs found

    The monobloc hydrogel breast implant, experiences and ideas

    Get PDF
    This study is focused on the properties of the monobloc hydrogel (MH) breast implant, which has been around for more than 30 years, and to see how it behaves with regard to health complaints as sometimes seen in some patients who had received silicone gel (SG) breast implants. Patients responded to a questionnaire examining their experience with breast implants. Three groups were included. First, the control group (n = 34) of women without breast implants. Second, a C group of women (n = 42) who began and remained on the MH implant. Third, the B group of women who had their silicone gel implant replaced by the MH implant. In the B1 subgroup (n = 22), a capsulectomy was also performed. In the B2 subgroup (n = 13), the replacement was carried out without a capsulectomy. The C group behaved very much like the control group. The women of the B group experienced an improvement of their complaints and the improvement was even better after a capsulectomy. The only difference between the MH and SG implants is the content of the implant. The satisfaction of women with MH implants is generally high and not or hardly associated with health complaints. In women with SG implants and health complaints, these complaints can be relieved by replacement of the implants by MH implants

    A sonographic spectrum of psoriatic arthritis: “the five targets”

    Get PDF
    Ultrasound is a rapidly evolving technique that is gaining an increasing success in the assessment of psoriatic arthritis. Most of the studies have been aimed at investigating its ability in the assessment of joints, tendons, and entheses in psoriatic arthritis patients. Less attention has been paid to demonstrate the potential of ultrasound in the evaluation of skin and nail. The aim of this pictorial essay was to show the main high-frequency grayscale and power Doppler ultrasound findings in patients with psoriatic arthritis at joint, tendon, enthesis, skin, and nail level

    Science-Driven Optimization of the LSST Observing Strategy

    Get PDF
    The Large Synoptic Survey Telescope is designed to provide an unprecedented optical imaging dataset that will support investigations of our Solar System, Galaxy and Universe, across half the sky and over ten years of repeated observation. However, exactly how the LSST observations will be taken (the observing strategy or "cadence") is not yet finalized. In this dynamically-evolving community white paper, we explore how the detailed performance of the anticipated science investigations is expected to depend on small changes to the LSST observing strategy. Using realistic simulations of the LSST schedule and observation properties, we design and compute diagnostic metrics and Figures of Merit that provide quantitative evaluations of different observing strategies, analyzing their impact on a wide range of proposed science projects. This is work in progress: we are using this white paper to communicate to each other the relative merits of the observing strategy choices that could be made, in an effort to maximize the scientific value of the survey. The investigation of some science cases leads to suggestions for new strategies that could be simulated and potentially adopted. Notably, we find motivation for exploring departures from a spatially uniform annual tiling of the sky: focusing instead on different parts of the survey area in different years in a "rolling cadence" is likely to have significant benefits for a number of time domain and moving object astronomy projects. The communal assembly of a suite of quantified and homogeneously coded metrics is the vital first step towards an automated, systematic, science-based assessment of any given cadence simulation, that will enable the scheduling of the LSST to be as well-informed as possible
    corecore