49 research outputs found

    The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic chagasic cardiomyopathy is a debilitating and frequently fatal outcome of human infection with the protozoan parasite, <it>Trypanosoma cruzi</it>. Microarray analysis of gene expression during the <it>T. cruzi </it>life-cycle could be a valuable means of identifying drug and vaccine targets based on their appropriate expression patterns, but results from previous microarray studies in <it>T. cruzi </it>and related kinetoplastid parasites have suggested that the transcript abundances of most genes in these organisms do not vary significantly between life-cycle stages.</p> <p>Results</p> <p>In this study, we used whole genome, oligonucleotide microarrays to globally determine the extent to which <it>T. cruzi </it>regulates mRNA relative abundances over the course of its complete life-cycle. In contrast to previous microarray studies in kinetoplastids, we observed that relative transcript abundances for over 50% of the genes detected on the <it>T. cruzi </it>microarrays were significantly regulated during the <it>T. cruzi </it>life-cycle. The significant regulation of 25 of these genes was confirmed by quantitative reverse-transcriptase PCR (qRT-PCR). The <it>T. cruzi </it>transcriptome also mirrored published protein expression data for several functional groups. Among the differentially regulated genes were members of paralog clusters, nearly 10% of which showed divergent expression patterns between cluster members.</p> <p>Conclusion</p> <p>Taken together, these data support the conclusion that transcript abundance is an important level of gene expression regulation in <it>T. cruzi</it>. Thus, microarray analysis is a valuable screening tool for identifying stage-regulated <it>T. cruzi </it>genes and metabolic pathways.</p

    Regulatory elements involved in the post-transcriptional control of stage-specific gene expression in Trypanosoma cruzi: a review

    Full text link
    Trypanosoma cruzi, a protozoan parasite that causes Chagas disease, exhibits unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes, RNA editing and trans-splicing. In the absence of mechanism controlling transcription initiation, organized subsets of T. cruzi genes must be post-transcriptionally co-regulated in response to extracellular signals. The mechanisms that regulate stage-specific gene expression in this parasite have become much clearer through sequencing its whole genome as well as performing various proteomic and microarray analyses, which have demonstrated that at least half of the T. cruzi genes are differentially regulated during its life cycle. In this review, we attempt to highlight the recent advances in characterising cis and trans-acting elements in the T. cruzi genome that are involved in its post-transcriptional regulatory machinery

    Anti-microbial activities of pomegranate rind extracts: enhancement by cupric sulphate against clinical isolates of S. aureus, MRSA and PVL positive CA-MSSA

    Get PDF
    BACKGROUND: Recently, natural products have been evaluated as sources of antimicrobial agents with efficacies against a variety of micro-organisms. METHODS: This report describes the antimicrobial activities of pomegranate rind extract (PRE) singularly and in combination with cupric sulphate against methicillin-sensitive and -resistant Staphylococcus aureus (MSSA, MRSA respectively), and Panton-Valentine Leukocidin positive community acquired MSSA (PVL positive CA-MSSA). RESULTS: PRE alone showed limited efficacy against MRSA and MSSA strains. Exposure to copper (II) ions alone for 2 hours resulted in moderate activity of between 102 to 103 log10 cfu mL-1 reduction in growth. This was enhanced by the addition of PRE to 104 log10 cfu mL-1 reduction in growth being observed in 80% of the isolates. However, the PVL positive CA-MSSA strains were more sensitive to copper (II) ions which exhibited moderate activities of between 103 log10 cfu mL-1 reduction in growth for 60% of the isolates. CONCLUSION: PRE, in combination with Cu(II) ions, was seen to exhibit moderate antimicrobial effects against clinical isolates of MSSA, MRSA and PVL positive CA-MSSA isolates. The results of this study indicate that further investigation into the active ingredients of natural products, their mode of action and potential synergism with other antimicrobial agents is warranted. This is the first report of the efficacy of pomegranate against clinical PVL positive CA-MSSA isolates

    Antimicrobial activities of pomegranate rind extracts: enhancement by addition of metal salts and vitamin C

    Get PDF
    BACKGROUND: Punica granatum L. or pomegranates, have been reported to have antimicrobial activity against a range of Gram positive and negative bacteria. Pomegranate formulations containing ferrous salts have enhanced although short-term, antibacteriophage activities which are rapidly diminished owing to instability of the ferrous combination. The aim of this study was to determine the antimicrobial activities of combinations of pomegranate rind extracts (PRE) with a range of metals salts with the added stabiliser vitamin C. METHODS: PRE solutions, prepared by blending rind sections with distilled water prior to sterilisation by autoclaving or filtration, were screened with a disc diffusion assay using penicillin G as a control. Suspension assays were used to determine the antimicrobial activities of PRE alone and in combination with salts of the following metals; Fe (II), Cu (II), Mn (II) or Zn (II), and vitamin C, against a panel of microbes following exposure for 30 mins. The test organisms included Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis. RESULTS: The screening assay demonstrated that PRE exhibited activity against the Gram positive organisms at 24 h with no observable effect on any of the Gram negative bacteria. However, after 12 h, zones of inhibition were only observed for Ps. aeruginosa. In contrast, using the suspension assay, addition of Cu (II) salts to PRE solutions extended the activities resulting in no detectable growth being observed for the PRE/Cu (II) combination against E. coli, Ps. aeruginosa and P. mirabilis. Minimal antimicrobial activity was observed following incubation with Fe (II), Mn (II) or Zn (II) salts alone or in combination with PRE against any of the organisms in the test panel. The addition of vitamin C markedly enhanced the activities of both PRE/Fe (II) and PRE/Cu (II) combinations against S. aureus. CONCLUSION: This is the first report demonstrating the enhanced efficacy of PRE/metal salt combinations in the presence of the stabilising agent vitamin C, to which all isolates were sensitive with the exception of B. subtilis. This study has validated the exploration of PRE along with additives such as metal salts and vitamin C as novel antimicrobial combinations
    corecore