51 research outputs found

    A novel de novo BRCA1 mutation in a Chinese woman with early onset breast cancer

    Get PDF
    Germline mutations in the two breast cancer susceptibility genes, BRCA1 and BRCA2 account for a significant portion of hereditary breast/ovarian cancer. De novo mutations such as multiple exon deletion are rarely occurred in BRCA1 and BRCA2. During our mutation screening for BRCA1/2 genes to Chinese women with risk factors for hereditary breast/ovarian cancer, we identified a novel germline mutation, consisting of a deletion from exons 1 to 12 in BRCA1 gene, in a patient diagnosed with early onset triple negative breast cancer with no family history of cancer. None of her parents carried the mutation and molecular analysis showed that this novel de novo germline mutation resulted in down-regulation of BRCA1 gene expression

    Combined loss of the BH3-only proteins Bim and Bmf restores B-cell development and function in TACI-Ig transgenic mice.

    Get PDF
    Terminal differentiation of B cells depends on two interconnected survival pathways, elicited by the B-cell receptor (BCR) and the BAFF receptor (BAFF-R), respectively. Loss of either signaling pathway arrests B-cell development. Although BCR-dependent survival depends mainly on the activation of the v-AKT murine thymoma viral oncogene homolog 1 (AKT)/PI3-kinase network, BAFF/BAFF-R-mediated survival engages non-canonical NF-κB signaling as well as MAPK/extracellular-signal regulated kinase and AKT/PI3-kinase modules to allow proper B-cell development. Plasma cell survival, however, is independent of BAFF-R and regulated by APRIL that signals NF-κB activation via alternative receptors, that is, transmembrane activator and CAML interactor (TACI) or B-cell maturation (BCMA). All these complex signaling events are believed to secure survival by increased expression of anti-apoptotic B-cell lymphoma 2 (Bcl2) family proteins in developing and mature B cells. Curiously, how lack of BAFF- or APRIL-mediated signaling triggers B-cell apoptosis remains largely unexplored. Here, we show that two pro-apoptotic members of the 'Bcl2 homology domain 3-only' subgroup of the Bcl2 family, Bcl2 interacting mediator of cell death (Bim) and Bcl2 modifying factor (Bmf), mediate apoptosis in the context of TACI-Ig overexpression that effectively neutralizes BAFF as well as APRIL. Surprisingly, although Bcl2 overexpression triggers B-cell hyperplasia exceeding the one observed in Bim(-/-)Bmf(-/-) mice, Bcl2 transgenic B cells remain susceptible to the effects of TACI-Ig expression in vivo, leading to ameliorated pathology in Vav-Bcl2 transgenic mice. Together, our findings shed new light on the molecular machinery restricting B-cell survival during development, normal homeostasis and under pathological conditions. Our data further suggest that Bcl2 antagonists might improve the potency of BAFF/APRIL-depletion strategies in B-cell-driven pathologies
    corecore