10,226 research outputs found

    Lunar orbiting microwave beam power system

    Get PDF
    A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars

    An accurate formula for the period of a simple pendulum oscillating beyond the small-angle regime

    Full text link
    A simple approximation formula is derived here for the dependence of the period of a simple pendulum on amplitude that only requires a pocket calculator and furnishes an error of less than 0.25% with respect to the exact period. It is shown that this formula describes the increase of the pendulum period with amplitude better than other simple formulas found in literature. A good agreement with experimental data for a low air-resistance pendulum is also verified and it suggests, together with the current availability/precision of timers and detectors, that the proposed formula is useful for extending the pendulum experiment beyond the usual small-angle oscillations.Comment: 15 pages and 4 figures. to appear in American Journal of Physic

    Niobium-based superconducting nano-devices fabrication using all-metal suspended masks

    Full text link
    We report a novel method for the fabrication of superconducting nanodevices based on niobium. The well-known difficulties of lithographic patterning of high-quality niobium are overcome by replacing the usual organic resist mask by a metallic one. The quality of the fabrication procedure is demonstrated by the realization and characterization of long and narrow superconducting lines and niobium-gold-niobium proximity SQUIDs

    Nonadiabatic Pauli susceptibility in fullerene compounds

    Full text link
    Pauli paramagnetic susceptibility χ\chi is unaffected by the electron-phonon interaction in the Migdal-Eliashberg context. Fullerene compounds however do not fulfill the adiabatic assumption of Migdal's theorem and nonadiabatic effects are expected to be relevant in these materials. In this paper we investigate the Pauli spin susceptibility in nonadiabatic regime by following a conserving approach based on Ward's identity. We find that a sizable renormalization of χ\chi due to electron-phonon coupling appears when nonadiabatic effects are taken into account. The intrinsic dependence of χ\chi on the electron-phonon interaction gives rise to a finite and negative isotope effect which could be experimentally detected in fullerides. In addition, we find an enhancement of the spin susceptibility with temperature increasing, in agreement with the temperature dependence of χ\chi observed in fullerene compounds. The role of electronic correlation is also discussed.Comment: Revtex, 10 pages, 8 figures include

    Coulomb gas representation of quantum Hall effect on Riemann surfaces

    Get PDF
    Using the correlation function of chiral vertex operators of the Coulomb gas model, we find the Laughlin wavefunctions of quantum Hall effect, with filling factor ν=1/m\nu =1/m, on Riemann sufaces with Poincare metric. The same is done for quasihole wavefunctions. We also discuss their plasma analogy.Comment: 10 pages, LaTex, the paper is completely rewritten, It will be appeared in : Jour. Phys. A 32 (1999

    The Modular Group, Operator Ordering, and Time in (2+1)-Dimensional Gravity

    Get PDF
    A choice of time-slicing in classical general relativity permits the construction of time-dependent wave functions in the ``frozen time'' Chern-Simons formulation of (2+1)(2+1)-dimensional quantum gravity. Because of operator ordering ambiguities, however, these wave functions are not unique. It is shown that when space has the topology of a torus, suitable operator orderings give rise to wave functions that transform under the modular group as automorphic functions of arbitrary weights, with dynamics determined by the corresponding Maass Laplacians on moduli space.Comment: 8 pages, LaTe

    Thermal Conductivity near H_c2 for spin-triplet superconducting States with line nodes in Sr_2RuO_4

    Full text link
    We calculate the thermal conductivity kappa in magnetic fields near H_c2 for spin-triplet superconducting states with line nodes vertical and horizontal relative to the RuO_2-planes. The method for calculating the Green's functions takes into account the spatial variation of the order parameter and superconducting flow for the Abrikosov vortex lattice. For in-plane magnetic field we obtain variations of the in-plane kappa with two-fold symmetry as a function of rotation angle where the minima and maxima occur for field directions parallel and perpendicular to the heat flow. The amplitude of the variation decreases with increasing impurity scattering and temperature. At higher temperatures the minima and maxima of the variation are interchanged. Since the results for vertical and horizontal line nodes are almost the same we cannot say which of the two pairing models is more compatible with recent measurements of kappa in Sr_2RuO_4. The observed four-fold modulation of kappa in YBa_2Cu_3O_(7-\delta) is obtained for d-wave pairing by taking into account the particular shape of the Fermi surface and the finite temperature effect. The results for kappa for the f-wave pairing state with horizontal line nodes disagree in some respects with the measurements on UPt_3.Comment: 8 pages, 6 figures. To be published in Phys. Rev.

    Polarization Diffusion from Spacetime Uncertainty

    Full text link
    A model of Lorentz invariant random fluctuations in photon polarization is presented. The effects are frequency dependent and affect the polarization of photons as they propagate through space. We test for this effect by confronting the model with the latest measurements of polarization of Cosmic Microwave Background (CMB) photons.Comment: 4 pages, 1 figur
    corecore