15 research outputs found

    Study of the beam-cavity interaction in the PS 10 MHz RF system

    Get PDF
    The eleven main accelerating cavities of the Proton Synchrotron (PS) at CERN consist of two ferrite-loaded coaxial lambda/4 resonators each. Both resonators oscillate in phase, as their gaps are electrically connected by short bars. They are in addition magnetically coupled via the bias loop used for cavity tuning. The cavities are equipped with a wide-band feedback system, limiting the beam loading, and a further reduction of the beam induced voltage is achieved by relays which short-circuit each half-resonator gap when the cavity is not in use. Asymmetries of the beam induced voltage observed in the two half-cavities indicate that the coupling between the two resonators is not as tight as expected. The total cavity impedance coupling to the beam may be affected differently by the contributions of both resonators. A dedicated measurement campaign with high-intensity proton beam and numerical simulation have been performed to investigate the beam-cavity interaction. This paper reports the result of the study and the work aiming at the development of a model of the system, including the wide-band feedback, which reproduces this interaction

    The PS 10 MHz High Level RF System Upgrade

    Get PDF
    In view of the upgrade of the injectors for the High Luminosity LHC, significantly higher bunch intensity is required for LHC-type beams. In this context an upgrade of the main accelerating RF system of the Proton Synchrotron (PS) is necessary, aiming at reducing the cavity impedance which is the source of longitudinal coupled-bunch oscillations. These instabilities pose as a major limitation for the increase of the beam intensity as planned after LS2. The 10 MHz RF system consists in 11 ferrite loaded cavities, driven by tube-based power amplifiers for reasons of radiation hardness. The cavity-amplifier system is equipped with a wide-band feedback that reduces the beam induced voltage. A further reduction of the beam loading is foreseen by upgrading the feedback system, which can be reasonably achieved by increasing the loop gain of the existing amplification chain. This paper describes the progress of the design of the upgraded feedback system and shows the results of the tests on the new amplifier prototype, installed in the PS during the 2015-16 technical stop. It also reports the first results of its performance with beam, observed in the beginning of the 2016 run

    Staging of osteonecrosis of the jaw requires computed tomography for accurate definition of the extent of bony disease

    Get PDF
    Management of osteonecrosis of the jaw associated with antiresorptive agents is challenging, and outcomes are unpredictable. The severity of disease is the main guide to management, and can help to predict prognosis. Most available staging systems for osteonecrosis, including the widely-used American Association of Oral and Maxillofacial Surgeons (AAOMS) system, classify severity on the basis of clinical and radiographic findings. However, clinical inspection and radiography are limited in their ability to identify the extent of necrotic bone disease compared with computed tomography (CT). We have organised a large multicentre retrospective study (known as MISSION) to investigate the agreement between the AAOMS staging system and the extent of osteonecrosis of the jaw (focal compared with diffuse involvement of bone) as detected on CT. We studied 799 patients with detailed clinical phenotyping who had CT images taken. Features of diffuse bone disease were identified on CT within all AAOMS stages (20%, 8%, 48%, and 24% of patients in stages 0, 1, 2, and 3, respectively). Of the patients classified as stage 0, 110/192 (57%) had diffuse disease on CT, and about 1 in 3 with CT evidence of diffuse bone disease was misclassified by the AAOMS system as having stages 0 and 1 osteonecrosis. In addition, more than a third of patients with AAOMS stage 2 (142/405, 35%) had focal bone disease on CT. We conclude that the AAOMS staging system does not correctly identify the extent of bony disease in patients with osteonecrosis of the jaw

    Study of the beam-cavity interaction in the CERN PS 10 MHz cavities and investigation of hardware solutions to reduce beam loading

    No full text
    In the Proton Synchrotron (PS), where the LHC protons longitudinal structure (bunch spacing) is determined as the result of a sophisticated series of Radio Frequency (RF) gymnastics, collective effects were identified as a major limitation to the achievable beam current delivered to the LHC. Dedicated machine development studies pointed out the RF cavities to be one of the major source of instability in the PS. In particular, the 10 MHz RF system, responsible for beam acceleration, was identified as the most probable impedance source in the machine. The cavity impedance limits the circulating intensity in the accelerator since the beam-induced voltage could trigger longitudinal instabilities causing beam losses. For this reason the cavity impedance seen by the beam must be kept as low as possible. In the framework of the LHC Injector Upgrade (LIU) project, the present PS 10 MHz RF system requires an upgrade, in order to reach higher beam intensities and to reduce beam loading. This thesis focuses on the improvements of the wide band feedback system that encloses the 10 MHz cavities and their driving amplifier. It describes the upgrade it underwent to reduce the cavity impedance seen by the beam, avoiding a complete redesign of the amplifier-cavity system and keeping the present configuration of the vacuum tubes amplifier driving the cavity. This work describes the studies that were carried out to quantify the contribution of the 10 MHz RF system to the PS longitudinal impedance. It, indeed, summarizes the measurements and simulations that led to a full characterization and evaluation of the effective impedance of the eleven 10 MHz cavity-amplifier systems installed in the PS

    Design report of a 1 kW power ampliïŹer for the PS RF 10 MHz system

    No full text
    The ability of the PS 10 MHz RF system to cope with high intensity beams mainly depends on the fast RF feedback loop that drastically reduces the cavity impedance seen by the beam. The present RF loop is built around a multi-stage, vacuum tube based ampliïŹer that went through a long upgrade process to achieve an equivalent cavity impedance as seen by the beam of ∌400 Ω. The aim of further reducing the impedance below 400 Ω in view of the expected higher beam intensities, as well as the possibility of implementing a solid-state solution has triggered the present work. The following design shows that good performances can be achieved with RF MOSFETs, which can deal with high voltages and power and whose characteristics have been tested in a radioactive environment

    Magnetic characterization of ferrite materials used in the ELENA magnetic pick-ups

    No full text
    The CERN Extra Low ENergy Antiproton (ELENA) Ring is a new synchrotron designed for cooling and further decelerating the 5.3 MeV antiprotons delivered by the CERN Antiproton Decelerator (AD). The ring is equipped with two magnetic pick-ups used for longitudinal beam diagnostics. These ultra low noise AC beam transformers consist of a doubly shielded, ferrite-loaded cavity with a ceramic gap in the beam pipe, a secondary winding to which an ultralow noise JFET head amplifier with feedback is connected. The JFET head amplifier is mounted close to the cavity and the AC beam transformers are covering respectively the 0.003-3MHz frequency range (low frequency type) and 0.8-30 MHz frequency range (high frequency type) [1]. The ferrite material used to couple primary and secondary in the beam transformer, has a key impact in the noise characteristics of the amplifier. For this reason a magnetic characterization of the selected ferrite rings has been carried out and is reported in the following

    Uncontrolled Longitudinal Emittance Blow-Up during RF Manipulations in the CERN PS

    No full text
    The CERN Proton Synchrotron (PS) determines the basic bunch spacing for the Large Hadron Collider (LHC) by means of rf manipulations. Several rf systems in a frequency range from 2.8 MHz to 200 MHz are available for beam acceleration and manipulations. Each of the six bunches injected from the PS Booster is split in several steps into 12 bunches spaced by 25 ns, yielding a batch of 72 bunches at transfer to the Super Proton Synchrotron (SPS). In the framework of the LHC Injector Upgrade (LIU) project the bunch intensity must be doubled. However, with most of the planned upgrades already in place this intensity has not yet been achieved due to collective effects. One of them is uncontrolled longitudinal emittance blow-up during the bunch splittings. In this contribution, measurements of the blow-up during the splitting process are presented and compared with particle simulations using the present PS impedance model. Beam-based measurements of the impedances of the rf cavities have been performed. They revealed that to reproduce the instability an additional impedance source is required in the PS impedance model.The CERN Proton Synchrotron (PS) determines the basic bunch spacing for the Large Hadron Collider (LHC) by means of rf manipulations. Several rf systems in a frequency range from 2.8 MHz to 200 MHz are available for beam acceleration and manipulations. Each of the six bunches injected from the PS Booster is split in several steps into 12 bunches spaced by 25 ns, yielding a batch of 72 bunches at transfer to the Super Proton Synchrotron (SPS). In the framework of the LHC Injector Upgrade (LIU) project the bunch intensity must be doubled. However, with most of the planned upgrades already in place this intensity has not yet been achieved due to collective effects. One of them is uncontrolled longitudinal emittance blowup during the bunch splittings. In this contribution, measurements of the blow-up during the splitting process are presented and compared with particle simulations using the present PS impedance model. Beam-based measurements of the impedances of the rf cavities have been performed. They revealed that to reproduce the instability an additional impedance source is required in the PS impedance model

    Measurement techniques and application of combined parallel/orthogonal magnetic bias on a ferrite tuned resonator in low frequency range (3-10 MHz)

    No full text
    We present several measurement methods for evaluation of magnetic properties of magnetically biased and non-biased ferrite samples in a coaxial test fixture. One important aspect is the crosscheck of results obtained by using different and independent measurement and evaluation methods. Since a rather high DC bias current has to be applied, a dedicated network was designed that allows the passage of up to 50 A DC without degradation of the RF performance. With a combination of calibration methods and a compensating topology with two identical sample holders, a good performance was achieved. In this context, magnetic material parameters for about 10 different types of ferrite were obtained. The orthogonal magnetic bias was added by placing the entire test fixture into a large toroidal coil. Thus, the bias field can be supplied independently from, and in addition to the classical parallel bias. An optimal combination between the two biasing fields was found, resulting in a reduction of magnetic losses up to 50% on certain ferrites. We show that the mixed magnetization, normally used for garnets only, is beneficial also for other types of ferrites

    The PS 10 MHz High Level RF System Upgrade

    No full text
    In view of the upgrade of the injectors for the High Luminosity LHC, significantly higher bunch intensity is required for LHC-type beams. In this context an upgrade of the main accelerating RF system of the Proton Synchrotron (PS) is necessary, aiming at reducing the cavity impedance which is the source of longitudinal coupled-bunch oscillations. These instabilities pose as a major limitation for the increase of the beam intensity as planned after LS2. The 10 MHz RF system consists in 11 ferrite loaded cavities, driven by tube-based power amplifiers for reasons of radiation hardness. The cavity-amplifier system is equipped with a wide-band feedback that reduces the beam induced voltage. A further reduction of the beam loading is foreseen by upgrading the feedback system, which can be reasonably achieved by increasing the loop gain of the existing amplification chain. This paper describes the progress of the design of the upgraded feedback system and shows the results of the tests on the new amplifier prototype, installed in the PS during the 2015-16 technical stop. It also reports the first results of its performance with beam, observed in the beginning of the 2016 run
    corecore