52 research outputs found

    Towards enhanced stability of human stance with a supernumerary robotic tail

    Get PDF

    Haptic ankle platform for interactive walking in virtual reality.

    Get PDF
    This paper presents an impedance type ankle haptic interface for providing users with an immersive navigation experience in virtual reality (VR). The ankle platform actuated by an electric motor with feedback control enables the use of foot-tapping gestures to create a walking experience similar to a real one and to haptically render different types of walking terrains. Experimental studies demonstrated that the interface can be easily used to generate virtual walking and it is capable to render terrains such as hard and soft surfaces, and multi-layer complex dynamic terrains. The designed system is a seated-type VR locomotion interface, therefore allowing its user to maintain a stable seated posture to comfortably navigate a virtual scene

    Anticipatory detection of turning in humans for intuitive control of robotic mobility assistance

    Get PDF
    Many wearable lower-limb robots for walking assistance have been developed in recent years. However, it remains unclear how they can be commanded in an intuitive and efficient way by their user. In particular, providing robotic assistance to neurologically impaired individuals in turning remains a significant challenge. The control should be safe to the users and their environment, yet yield sufficient performance and enable natural human-machine interaction. Here, we propose using the head and trunk anticipatory behaviour in order to detect the intention to turn in a natural, non-intrusive way, and use it for triggering turning movement in a robot for walking assistance. We therefore study head and trunk orientation during locomotion of healthy adults, and investigate upper body anticipatory behaviour during turning. The collected walking and turning kinematics data are clustered using the k-means algorithm and cross-validation tests and k-nearest neighbours method are used to evaluate the performance of turning detection during locomotion. Tests with seven subjects exhibited accurate turning detection. Head anticipated turning by more than 400–500 ms in average across all subjects. Overall, the proposed method detected turning 300 ms after its initiation and 1230 ms before the turning movement was completed. Using head anticipatory behaviour enabled to detect turning faster by about 100 ms, compared to turning detection using only pelvis orientation measurements. Finally, it was demonstrated that the proposed turning detection can improve the quality of human–robot interaction by improving the control accuracy and transparency

    Soft Haptic Interface based on Vibration and Particle Jamming

    Get PDF
    Whilst common in devices ranging from smart-phones to game controllers, vibrotactile feedback has generally been limited to providing a uniform sensation across a tactile surface. We propose a haptic interface based on the emerging physical effect of particle jamming with both vibrotactile and shape changing outputs, which can be extended in space to create haptic surfaces and devices with shape and vibrotactile responses localised to one part of the device. This paper gives an overview of the physical principles behind this technology and presents detailed performance metrics obtained from a working prototype. These include experimental characterization of the relationships between air pressure and electric motor power and vibration amplitude and frequency which show that it is possible to control vibrotactile amplitude and frequency independently

    Position and Velocity Control for Telemanipulation with Interoperability Protocol

    Get PDF
    International audienceIn this paper we describe how a generic interoperability teler-obotics protocol can be applied for master-slave robotic systems operating in position-position, position-speed and hybrid control modes. The interoperability protocol allows robust and efficient data exchange for teleoperation systems, however it was not shown how it can fit switching position and rate control modes. Here we propose the general framework of hybrid position and rate control modes with interoperability protocol. Furthermore, we demonstrate experimentally that the framework is suitable for robotics teleoperation systems in which a human-operator can switch between position-position and position-speed master and slave robots' workspace mapping

    Sensory Integration of Apparent Motion Speed and Vibration Magnitude

    Get PDF
    Tactile apparent motion can display directional information in an intuitive way. It can for example be used to give directions to visually impaired individuals, or for waypoint navigation while cycling on busy streets, when vision or audition should not be loaded further. However, although humans can detect very short tactile patterns, discriminating between similar motion speeds has been shown to be difficult. Here we develop and investigate a method where the speed of tactile apparent motion around the user & #x0027;s wrist is coupled with vibration magnitude. This redundant coupling is used to produce tactile patterns from slow & amp;weak to fast & amp;strong. We compared the just noticeable difference (JND) of the coupled and the individual variables. The results show that the perception of the coupled variable can be characterised by JND smaller than JNDs of the individual variables. This allowed us to create short tactile pattens (tactons) for display of direction and speed, which can be distinguished significantly better than tactons based on motion alone. Additionally, most subjects were also able to identify the coupled-variable tactons better than the magnitude-based tactons

    Review of Anthropomorphic Head Stabilisation and Verticality Estimation in Robots

    Get PDF
    International audienceIn many walking, running, flying, and swimming animals, including mammals, reptiles, and birds, the vestibular system plays a central role for verticality estimation and is often associated with a head sta-bilisation (in rotation) behaviour. Head stabilisation, in turn, subserves gaze stabilisation, postural control, visual-vestibular information fusion and spatial awareness via the active establishment of a quasi-inertial frame of reference. Head stabilisation helps animals to cope with the computational consequences of angular movements that complicate the reliable estimation of the vertical direction. We suggest that this strategy could also benefit free-moving robotic systems, such as locomoting humanoid robots, which are typically equipped with inertial measurements units. Free-moving robotic systems could gain the full benefits of inertial measurements if the measurement units are placed on independently orientable platforms, such as a human-like heads. We illustrate these benefits by analysing recent humanoid robots design and control approaches

    Design, characterisation and validation of a haptic interface based on twisted string actuation.

    Get PDF
    This paper presents the design and experimental characterisation of a wrist haptic interface based on a twisted string actuator. The interface is designed for controlled actuation of wrist flexion/extension and is capable of rendering torque feedback through a rotary handle driven by the twisted string actuator and spring-loaded cable mechanisms. The interface was characterised to obtain its static and dynamic haptic feedback rendering capabilities. Compliance in the spring and actuation mechanism makes the interface suitable for smooth rendering of haptic feedback of large magnitudes due to the high motion transmission ratio of the twisted strings. Haptic virtual wall rendering capabilities are demonstrated
    corecore