182 research outputs found

    Relativistic Effects on the Appearance of a Clothed Black Hole

    Get PDF
    For an accretion disk around a black hole, the strong relativistic effects affect every aspect of the radiation from the disk, including its spectrum, light-curve, and image. This work investigates in detail how the images of a thin disk around a black hole will be distorted, and what the observer will see from different viewing angles and in different energy bands.Comment: 4 pages, 5 figures. Based on the poster presented at the Sixth Pacific Rim Conference on Stellar Astrophysics (Xi'an, China, July 11-17, 2002). Color versions of figures are given separatel

    The relativistic Iron K-alpha line from an accretion disc onto a static non-baryonic compact object

    Full text link
    This paper continues the study of the properties of an accretion disc rotating around a non-baryonic (assumed super-massive) compact object. This kind of objects, generically known as boson stars, were earlier proposed as a possible alternative scenario to the existence of super-masive black holes in the center of every galaxy. A dilute boson star has also been proposed as a large part of the non-baryonic dark matter, flattening galactic rotational velocities curves. In this contribution, we compute the profile of the emission lines of Iron; its shape has been for long known as a useful diagnosis of the space-time geometry. We compare with the case of a Schwarzschild black hole, concluding that the differences are observationally distinguishable.Comment: 14 pages, 7 figure

    State of the art in bile analysis in forensic toxicology

    Get PDF
    AbstractIn forensic toxicology, alternative matrices to blood are useful in case of limited, unavailable or unusable blood sample, suspected postmortem redistribution or long drug intake-to-sampling interval. The present article provides an update on the state of knowledge for the use of bile in forensic toxicology, through a review of the Medline literature from 1970 to May 2015. Bile physiology and technical aspects of analysis (sampling, storage, sample preparation and analytical methods) are reported, to highlight specificities and consequences from an analytical and interpretative point of view. A table summarizes cause of death and quantification in bile and blood of 133 compounds from more than 200 case reports, providing a useful tool for forensic physicians and toxicologists involved in interpreting bile analysis. Qualitative and quantitative interpretation is discussed. As bile/blood concentration ratios are high for numerous molecules or metabolites, bile is a matrix of choice for screening when blood concentrations are low or non-detectable: e.g., cases of weak exposure or long intake-to-death interval. Quantitative applications have been little investigated, but small molecules with low bile/blood concentration ratios seem to be good candidates for quantitative bile-based interpretation. Further experimental data on the mechanism and properties of biliary extraction of xenobiotics of forensic interest are required to improve quantitative interpretation

    Substratos orgânicos e adubo de liberação lenta na produção de mudas de cajueiro-anão-precoce.

    Get PDF
    bitstream/item/79869/1/Substratos-Organicos.pd

    Central circulatory hemodynamics as a function of gravitational stress

    Get PDF
    This study focuses on an evaluation of the central hemodynamics in a nonhuman primate model to variations in gravitational states. The baboon, phylogenectically close to man, was chosen as the human surrogate. The study environments selected are head-down and head-up tilt in the physiology laboratory, centrifugation to test hypergravic stress, and parabolic flights to test transient acute responses to microgravity

    An extended scheme for fitting X-ray data with accretion disk spectra in the strong gravity regime

    Full text link
    Accreting black holes are believed to emit X-rays which then mediate information about strong gravity in the vicinity of the emission region. We report on a set of new routines for the Xspec package for analysing X-ray spectra of black-hole accretion disks. The new computational tool significantly extends the capabilities of the currently available fitting procedures that include the effects of strong gravity, and allows one to systematically explore the constraints on more model parameters than previously possible (for example black-hole angular momentum). Moreover, axial symmetry of the disk intrinsic emissivity is not assumed, although it can be imposed to speed up the computations. The new routines can be used also as a stand-alone and flexible code with the capability of handling time-resolved spectra in the regime of strong gravity. We have used the new code to analyse the mean X-ray spectrum from the long XMM--Newton 2001 campaign of the Seyfert 1 galaxy MCG--6-30-15. Consistent with previous findings, we obtained a good fit to the broad Fe K line profile for a radial line intrinsic emissivity law in the disk which is not a simple power law, and for near maximal value of black hole angular momentum. However, equally good fits can be obtained also for small values of the black hole angular momentum. The code has been developed with the aim of allowing precise modelling of relativistic effects. Although we find that current data cannot constrain the parameters of black-hole/accretion disk system well, the approach allows, for a given source or situation, detailed investigations of what features of the data future studies should be focused on in order to achieve the goal of uniquely isolating the parameters of such systems.Comment: Accepted for publication in ApJ S
    corecore