60 research outputs found
High performance polyethylene nanocomposite fibers
A high density polyethylene (HDPE) matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM) images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing
Three Dimensional Printing of Multiscale Carbon Fiber-Reinforced Polymer Composites Containing Graphene or Carbon Nanotubes
Three-dimensional printing offers a promising, challenging opportunity to manufacture component parts with ad hoc designed composite materials. In this study, the novelty of the research is the production of multiscale composites by means of a solvent-free process based on melt compounding of acrylonitrile–butadiene–styrene (ABS), with various amounts of microfillers, i.e., milled (M) carbon fibers (CFs) and nanofillers, i.e., carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs). The compounded materials were processed into compression molded sheets and into extruded filaments. The latter were then used to print fused filament fabrication (FFF) specimens. The multiscale addition of the microfillers inside the ABS matrix caused a notable increase in rigidity and a slight increase in strength. However, it also brought about a significant reduction of the strain at break. Importantly, GNPs addition had a good impact on the rigidity of the materials, whereas CNTs favored/improved the composites’ electrical conductivity. In particular, the addition of this nanofiller was very effective in improving the electrical conductivity compared to pure ABS and micro composites, even with the lowest CNT content. However, the filament extrusion and FFF process led to the creation of voids within the structure, causing a significant loss of mechanical properties and a slight improvement of the electrical conductivity of the printed multiscale composites. Selective parameters have been presented for the comparison and selection of compositions of multiscale nanocomposites
Polylactic acid-lauryl functionalized nanocellulose nanocomposites: Microstructural, thermo-mechanical and gas transport properties
Thermo-mechanical and gas transport properties of polylactic acid (PLA) matrix containing various amounts (from 1 to 20 wt%) of nanocellulose esterified with lauryl chains (LNC) were investigated on solvent cast film of about 50 micron. Scanning electron microscopy indicated that, up to a filler content of 6.5 wt%, LNC was well dispersed or formed small, sub-micrometric clusters. At higher filler contents, oval aggregates in the micrometric range were detected. The addition of LNC did not change the matrix glass transition temperature and melting temperature. Concurrently, as LNC content increased, both elastic and storage moduli at room temperature exhibited a sharp decrease up to 5 wt% of filler, and a lower reduction for LCN concentration of 10\u201320 wt.%. Nanocomposites with 3 and 5 wt% of LNC showed the highest strain at break and a large amount of plastic deformation due to a strong interfacial adhesion between the PLA and filler particles. For higher LNC fractions the presence of aggregates weakened the nanocomposite leading to lower values of maximum stress and strain at break. With the addition of LNC particles, gas barrier properties of the PLA film versus deuterium, nitrogen and carbon dioxide were improved up to a critical LNC concentration of 6.5 wt%, where the gas permeability of the nanocomposite resulted to be 70% lower than that of the PLA matrix. At higher filler contents, large LNC aggregates increased the gas permeability of the nanocomposites
Crystal structure and texture refinement of polymers from diffraction images
In the present work, we present a methodology to analyze diffraction images of polymers to obtain crystal structure, texture and microstructural information. A laboratory image plate system has been used to collect diffraction images in transmission and reflection diffraction of aligned and strained fibers of different polymers.
The images have been processedby a structure refinement approach including a Rietveld Texture Analysis for each polymer
Organically modified hydrotalcite for compounding and spinning of polyethylene nanocomposites
Organically modified hydrotalcite is a recent class of organoclay based on layered double hydroxides (LDH), which is anionically modified with environmental friendly ligands such as fatty acids. In this paper the influence of hydrotalcite compounded/dispersed by means of two different processes for production of plates and fibers of polyolefin nanocomposites will be compared. A polyethylene matrix, suitable for fiber production, was firstly compounded with various amounts of hydrotalcite in the range of 0.5–5% by weight, and then compression moulded in plates whose thermomechanical properties were evaluated. Similar compositions were processed by using a co-rotating twin screw extruder in order to directly produce melt-spun fibers. The incorporation of clay into both bulk and fiber nanocomposites enhanced the thermal stability and induced heterogeneous nucleation of polyethylene crystals. Hydrotalcite manifested a satisfactory dispersion into the polymer matrix, and hence positively affected the mechanical properties in term of an increase of both Young’s modulus and tensile strength. Tenacity of nanocomposite as spun fibers was increased up to 30% with respect to the neat polymer. Moreover, the addition of LDH filler induced an increase of the tensile modulus of drawn fibers from 5.0 GPa (neat HDPE) up to 5.6–5.8 GPa
Study of the corrosion behaviour of phosphatized and painted industrial water heaters
5nonenoneFedrizzi L; Deflorian F; Rossi S; Fambri L; Bonora PLFedrizzi, Lorenzo; Deflorian, F; Rossi, S; Fambri, L; Bonora, P
- …