3 research outputs found

    Hidden invasion and niche contraction revealed by herbaria specimens in the fungal complex causing oak powdery mildew in Europe

    No full text
    Deciphering the dynamics involved in past microbial invasions has proven difficult due to the inconspicuous nature of microbes and their still poorly known diversity and biogeography. Here we focus on powdery mildew, a common disease of oaks which emerged in Europe at the beginning of the twentieth century and for which three closely related Erysiphe species are mainly involved. The study of herbaria samples combined with an experimental approach of interactions between Erysiphe species led us to revisit the history of this multiple invasion. Contrary to what was previously thought, herbaria sample analyses very strongly suggested that the currently dominant species, E. alphitoides, was not the species which caused the first outbreaks and was described as a new species at that time. Instead, E. quercicola was shown to be present since the early dates of disease reports and to be widespread all over Europe in the beginning of the twentieth century. E. alphitoides spread and became progressively dominant during the second half of the twentieth century while E. quercicola was constrained to the southern part of its initial range, corresponding to its current distribution. A competition experiment provided a potential explanation of this over-invasion by demonstrating that E. alphitoides had a slight advantage over E. quercicola by its ability to infect leaves during a longer period during shoot development. Our study is exemplary of invasions with complexes of functionally similar species, emphasizing that subtle differences in the biology of the species, rather than strong competitive effects may explain patterns of over-invasion and niche contraction

    Microbial association networks give relevant insights into plant pathobiomes

    No full text
    Interactions between plant pathogens and other plant-associated microorganisms regulate disease. Deciphering the networks formed by these interactions, termed pathobiomes, is crucial to disease management. Our aim was to investigate whether microbial association networks inferred from metabarcoding data give relevant insights into pathobiomes, by testing whether inferred associations contain signals of ecological interactions. We used Poisson Lognormal Models to construct microbial association networks from metabarcoding data and then investigated whether some of these associations corresponded to interactions measurable in co-cultures or known in the literature, by using grapevine ( Vitis vinifera ) and the fungal pathogen causing powdery mildew ( Erysiphe necator ) as a model system. Our model suggested that the pathogen species was associated with 23 other fungal species, forming its putative pathobiome. These associations were not known as interactions in the literature, but one of them was confirmed by our co-culture experiments. The yeast Buckleyzyma aurantiaca impeded pathogen growth and reproduction, in line with the negative association found in the microbial network. Co-cultures also supported another association involving two yeast species. Together, these findings indicate that microbial networks can provide plausible hypotheses of ecological interactions that could be used to develop microbiome-based strategies for crop protection

    Allele mining of eukaryotic translation initiation factor genes in Prunus for the identification of new sources of resistance to sharka

    No full text
    Abstract Members of the eukaryotic translation initiation complex are co-opted in viral infection, leading to susceptibility in many crop species, including stone fruit trees (Prunus spp.). Therefore, modification of one of those eukaryotic translation initiation factors or changes in their gene expression may result in resistance. We searched the crop and wild Prunus germplasm from the Armeniaca and Amygdalus taxonomic sections for allelic variants in the eIF4E and eIFiso4E genes, to identify alleles potentially linked to resistance to Plum pox virus (PPV). Over one thousand stone fruit accessions (1397) were screened for variation in eIF4E and eIFiso4E transcript sequences which are in single copy within the diploid Prunus genome. We identified new alleles for both genes differing from haplotypes associated with PPV susceptible accessions. Overall, analyses showed that eIFiso4E is genetically more constrained since it displayed less polymorphism than eIF4E. We also demonstrated more variations at both loci in the related wild species than in crop species. As the eIFiso4E translation initiation factor was identified as indispensable for PPV infection, a selection of ten different eIFiso4E haplotypes along 13 accessions were tested by infection with PPV and eight of them displayed a range of reduced susceptibility to resistance, indicating new potential sources of resistance to sharka
    corecore