16 research outputs found

    Classifying simply connected wandering domains

    Get PDF
    While the dynamics of transcendental entire functions in periodic Fatou components and in multiply connected wandering domains are well understood, the dynamics in simply connected wandering domains have so far eluded classification. We give a detailed classification of the dynamics in such wandering domains in terms of the hyperbolic distances between iterates and also in terms of the behaviour of orbits in relation to the boundaries of the wandering domains. In establishing these classifications, we obtain new results of wider interest concerning non-autonomous forward dynamical systems of holomorphic self maps of the unit disk. We also develop a new general technique for constructing examples of bounded, simply connected wandering domains with prescribed internal dynamics, and a criterion to ensure that the resulting boundaries are Jordan curves. Using this technique, based on approximation theory, we show that all of the nine possible types of simply connected wandering domain resulting from our classifications are indeed realizable

    Fatou’s Associates

    Get PDF
    Suppose that f is a transcendental entire function, V⊊C is a simply connected domain, and U is a connected component of f-1(V). Using Riemann maps, we associate the map f : U→V to an inner function g : D→D. It is straightforward to see that g is either a finite Blaschke product, or, with an appropriate normalisation, can be taken to be an infinite Blaschke product. We show that when the singular values of f in V lie away from the boundary, there is a strong relationship between singularities of g and accesses to infinity in U. In the case where U is a forward-invariant Fatou component of f, this leads to a very significant generalisation of earlier results on the number of singularities of the map g. If U is a forward-invariant Fatou component of f there are currently very few examples where the relationship between the pair (f, U) and the function g has been calculated. We study this relationship for several well-known families of transcendental entire functions. It is also natural to ask which finite Blaschke products can arise in this manner, and we show the following: for every finite Blaschke product g whose Julia set coincides with the unit circle, there exists a transcendental entire function f with an invariant Fatou component such that g is associated with f in the above sense. Furthermore, there exists a single transcendental entire function f with the property that any finite Blaschke product can be arbitrarily closely approximated by an inner function associated with the restriction of f to a wandering domain

    Local fixed point indices of iterations of planar maps

    Get PDF
    Let f : U →R2 be a continuous map, where U is an open subset of R2. We consider a fixed point p of f which is neither a sink nor a source and such that p is an isolated invariant set. Under these assumption we prove, using Conley index methods and Nielsen theory, that the sequence of fixed point indices of iterations ind(fn, p) n=1 is periodic,bounded by 1, and has infinitely many non-positive terms, which is a generalization of Le Calvez and Yoccoz theorem [Annals of Math., 146 (1997), 241-293] onto the class of non-injective maps. We apply our result to study the dynamics of continuous maps on 2-dimensional sphere
    corecore