18 research outputs found

    Broad-Scale Patterns of Late Jurassic Dinosaur Paleoecology

    Get PDF
    There have been numerous studies on dinosaur biogeographic distribution patterns. However, these distribution data have not yet been applied to ecological questions. Ecological studies of dinosaurs have tended to focus on reconstructing individual taxa, usually through comparisons to modern analogs. Fewer studies have sought to determine if the ecological structure of fossil assemblages is preserved and, if so, how dinosaur communities varied. Climate is a major component driving differences between communities. If the ecological structure of a fossil locality is preserved, we expect that dinosaur assemblages from similar environments will share a similar ecological structure.This study applies Ecological Structure Analysis (ESA) to a dataset of 100+ dinosaur taxa arranged into twelve composite fossil assemblages from around the world. Each assemblage was assigned a climate zone (biome) based on its location. Dinosaur taxa were placed into ecomorphological categories. The proportion of each category creates an ecological profile for the assemblage, which were compared using cluster and principal components analyses. Assemblages grouped according to biome, with most coming from arid or semi-arid/seasonal climates. Differences between assemblages are tied to the proportion of large high-browsing vs. small ground-foraging herbivores, which separates arid from semi-arid and moister environments, respectively. However, the effects of historical, taphonomic, and other environmental factors are still evident.This study is the first to show that the general ecological structure of Late Jurassic dinosaur assemblages is preserved at large scales and can be assessed quantitatively. Despite a broad similarity of climatic conditions, a degree of ecological variation is observed between assemblages, from arid to moist. Taxonomic differences between Asia and the other regions demonstrate at least one case of ecosystem convergence. The proportion of different ecomorphs, which reflects the prevailing climatic and environmental conditions present during fossil deposition, may therefore be used to differentiate Late Jurassic dinosaur fossil assemblages. This method is broadly applicable to different taxa and times, allowing one to address questions of evolutionary, biogeographic, and climatic importance

    Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner

    Get PDF
    High tibial osteotomy (HTO) is a surgical procedure used to change the mechanical weight-bearing axis and alter the loads carried through the knee. Conventional indications for HTO are medial compartment osteoarthritis and varus malalignment of the knee causing pain and dysfunction. Traditionally, knee instability associated with varus thrust has been considered a contraindication. However, today the indications include patients with chronic ligament deficiencies and malalignment, because an HTO procedure can change not only the coronal but also the sagittal plane of the knee. The sagittal plane has generally been ignored in HTO literature, but its modification has a significant impact on biomechanics and joint stability. Indeed, decreased posterior tibial slope causes posterior tibia translation and helps the anterior cruciate ligament (ACL)-deficient knee. Vice versa, increased tibial slope causes anterior tibia translation and helps the posterior cruciate ligament (PCL)-deficient knee. A review of literature shows that soft tissue procedures alone are often unsatisfactory for chronic posterior instability if alignment is not corrected. Since limb alignment is the most important factor to consider in lower limb reconstructive surgery, diagnosis and treatment of limb malalignment should not be ignored in management of chronic ligamentous instabilities. This paper reviews the effects of chronic posterior instability and tibial slope alteration on knee and soft tissues, in addition to planning and surgical technique for chronic posterior and posterolateral instability with HTO

    Body Size Distribution of the Dinosaurs

    Get PDF
    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. © 2012 O'Gorman, Hone

    A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

    Get PDF

    Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival

    Get PDF
    Previous experiments suggest a connection between the N-alpha-acetylation of proteins and sensitivity of cells to apoptotic signals. Here, we describe a biochemical assay to detect the acetylation status of proteins and demonstrate that protein N-alpha-acetylation is regulated by the availability of acetyl-CoA. Because the antiapoptotic protein Bcl-xL is known to influence mitochondrial metabolism, we reasoned that Bcl-xL may provide a link between protein N-alpha-acetylation and apoptosis. Indeed, Bcl-xL overexpression leads to a reduction in levels of acetyl-CoA and N-alpha-acetylated proteins in the cell. This effect is independent of Bax and Bak, the known binding partners of Bcl-xL. Increasing cellular levels of acetyl-CoA by addition of acetate or citrate restores protein N-alpha-acetylation in Bcl-xL-expressing cells and confers sensitivity to apoptotic stimuli. We propose that acetyl-CoA serves as a signaling molecule that couples apoptotic sensitivity to metabolism by regulating protein N-alpha-acetylation

    Are coping styles consistent in the teleost fish Sparus aurata through sexual maturation and sex reversal?

    No full text
    Individual differences in behaviour and physiological responses to stress are associated with evolutionary adaptive variation and thus raw material for evolution. In farmed animals, the interest in consistent trait associations, i.e. coping styles, has increased dramatically over the last years. However, one of limitations of the available knowledge, regarding the temporal consistency, is that it refers always to short-term consistency (usually few weeks). The present study used an escape response during a net restraining test, previously shown to be an indicative of coping styles in seabream, to investigate long-term consistency of coping styles both over time and during different life history stages. Results showed both short-term (14 days) consistency and long-term (8 months) consistency of escape response. However, we did not found consistency in the same behaviour after sexual maturation when the restraining test was repeated 16, 22 and 23 months after the first test was performed. In conclusion, this study showed consistent behaviour traits in seabream when juveniles, and a loss of this behavioural traits when adults. Therefore, these results underline that adding a life story approach to data interpretation as an essential step forward towards coping styles foreground. Furthermore, a fine-tuning of aquaculture rearing strategies to adapt to different coping strategies may need to be adjusted differently at early stages of development and adults to improve the welfare of farmed fish
    corecore