23 research outputs found

    Temporal and spatial appearance of wall polysaccharides during cellularization of barley (Hordeum vulgare) endosperm

    No full text
    Barley endosperm begins development as a syncytium where numerous nuclei line the perimeter of a large vacuolated central cell. Between 3 and 6 days after pollination (DAP) the multinucleate syncytium is cellularized by the centripetal synthesis of cell walls at the interfaces of nuclear cytoplasmic domains between individual nuclei. Here we report the temporal and spatial appearance of key polysaccharides in the cell walls of early developing endosperm of barley, prior to aleurone differentiation. Flowering spikes of barley plants grown under controlled glasshouse conditions were hand-pollinated and the developing grains collected from 3 to 8 DAP. Barley endosperm development was followed at the light and electron microscope levels with monoclonal antibodies specific for (1→3)-β-d-glucan (callose), (1→3,1→4)-β-d-glucan, hetero-(1→4)-β-d-mannans, arabino-(1→4)-β-d-xylans, arabinogalactan-proteins (AGPs) and with the enzyme, cellobiohydrolase II, to detect (1→4)-β-d-glucan (cellulose). Callose and cellulose were present in the first formed cell walls between 3 and 4 DAP. However, the presence of callose in the endosperm walls was transient and at 6 DAP was only detected in collars surrounding plasmodesmata. (1→3,1→4)-β-d-Glucan was not deposited in the developing cell walls until approximately 5 DAP and hetero-(1→4)-β-d-mannans followed at 6 DAP. Deposition of AGPs and arabinoxylan in the wall began at 7 and 8 DAP, respectively. For arabinoxylans, there is a possibility that they are deposited earlier in a highly substituted form that is inaccessible to the antibody. Arabinoxylan and heteromannan were also detected in Golgi and associated vesicles in the cytoplasm. In contrast, (1→3,1→4)-β-d-glucan was not detected in the cytoplasm in endosperm cells; similar results were obtained for coleoptile and suspension cultured cells.Sarah M. Wilson, Rachel A. Burton, Monika S. Doblin, Bruce A. Stone, Edward J. Newbigin, Geoffrey B. Fincher and Antony Baci

    A genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the <i>Cellulose Synthase A </i>gene family

    Get PDF
    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two--rowed and 288 six--rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with cellulose synthase A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the genes that contribute to cellulose content in cereal culms and to a greater understanding of the interactions between them.Kelly Houston, Rachel A. Burton, Beata Sznajder, Antoni J. Rafalski, Kanwarpal S. Dhugga, Diane E. Mather, Jillian Taylor, Brian J. Steffenson, Robbie Waugh, Geoffrey B. Finche
    corecore