12 research outputs found

    Simvastatin inhibits TGFβ1-induced fibronectin in human airway fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bronchial fibroblasts contribute to airway remodelling, including airway wall fibrosis. Transforming growth factor (TGF)-β1 plays a major role in this process. We previously revealed the importance of the mevalonate cascade in the fibrotic response of human airway smooth muscle cells. We now investigate mevalonate cascade-associated signaling in TGFβ1-induced fibronectin expression by bronchial fibroblasts from non-asthmatic and asthmatic subjects.</p> <p>Methods</p> <p>We used simvastatin (1-15 μM) to inhibit 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase which converts HMG-CoA to mevalonate. Selective inhibitors of geranylgeranyl transferase-1 (GGT1; GGTI-286, 10 μM) and farnesyl transferase (FT; FTI-277, 10 μM) were used to determine whether GGT1 and FT contribute to TGFβ1-induced fibronectin expression. In addition, we studied the effects of co-incubation with simvastatin and mevalonate (1 mM), geranylgeranylpyrophosphate (30 μM) or farnesylpyrophosphate (30 μM).</p> <p>Results</p> <p>Immunoblotting revealed concentration-dependent simvastatin inhibition of TGFβ1 (2.5 ng/ml, 48 h)-induced fibronectin. This was prevented by exogenous mevalonate, or isoprenoids (geranylgeranylpyrophosphate or farnesylpyrophosphate). The effects of simvastatin were mimicked by GGTI-286, but not FTI-277, suggesting fundamental involvement of GGT1 in TGFβ1-induced signaling. Asthmatic fibroblasts exhibited greater TGFβ1-induced fibronectin expression compared to non-asthmatic cells; this enhanced response was effectively reduced by simvastatin.</p> <p>Conclusions</p> <p>We conclude that TGFβ1-induced fibronectin expression in airway fibroblasts relies on activity of GGT1 and availability of isoprenoids. Our results suggest that targeting regulators of isoprenoid-dependent signaling holds promise for treating airway wall fibrosis.</p

    Common and specific cognitive deficits in schizophrenia: relationships to function

    No full text
    The goals of the present study were to assess the interrelationships among tasks from the MATRICS and CNTRACS batteries, to determine the degree to which tasks from each battery capture unique variance in cognitive dys-function in schizophrenia, and to determine the ability of tasks from each battery to predict functional outcome. Subjects were 104 schizophrenia patients and 132 healthy control subjects recruited as part of the CNTRACS initiative. All subjects completed four CNTRACS tasks and two tasks from the MATRICS battery: Brief Assessment of Cognition in Schizophrenia Symbol Coding and the Hopkins Verbal Learning Test. Functional outcome was also assessed in the schizophrenia subjects. In both the patient and control groups, we found significant intercorrelations between all higher order cognitive tasks (episodic memory, goal maintenance, processing speed, verbal learning) but minimal relationships with the visual task. For almost all tasks, scores were significantly related to measures of functional outcome, with higher associations between CNTRACS tasks and performance-based measures of function and between one of the MATRICS tasks and self-reported functioning, relative to the other functioning measures. After regressing out variance shared by other tasks, we continued to observe group differences in performance among task residuals, particularly for measures of episodic memory from both batteries, although these residuals did not correlate as robustly with functional outcome as raw test scores. These findings suggest that there exists both shared and specific variance across cognitive tasks related to cognitive and functional impairments in schizophrenia and that measures derived from cognitive neuroscience can predict functional capacity and status in schizophrenia

    Cnidarian Interstitial Cells: The Dawn of Stem Cell Research

    No full text
    corecore