354 research outputs found

    Coexistent duodenal ulcer among patients with gastric carcinoma

    Get PDF
    To examine the prevalence of coexistent duodenal ulcers among patients with gastric carcinoma in an otherwise intact stomach, we surveyed 604 endoscopically and pathologically diagnosed gastric carcinoma patients and thoroughly inspected their duodenums. Twenty-two (3,6%) of them had either active ulcers or scars in the duodenum. This prevalence was significantly less than that among 99 (16,4%) of 604 age- and gender-matched control with endoscopically confirmed duodenal ulcers (P < 0,0001). Almost one-half of patients with coexistent cancer and duodenal ulcer experienced no change in abdominal symptoms when gastric cancer was diagnosed. Barium meal study appeared not to be sensitive enough to diagnose the coexistent ulcers. However, the nature of the lesions, including disease location, macroscopic appearance, chance of early cancer and metastasis, was no different in 22 patients with coexistent cancer and duodenal ulcer than in 582 patients with cancer alone. The present study suggests that although duodenal ulcer is unlikely to be a predisposing factor for gastric cancer, thorough screening by means of endoscopy is necessary in dyspepsic ulcer patients since duodenal ulcer and gastric cancer are not incompatible

    Structure of the Partition Function and Transfer Matrices for the Potts Model in a Magnetic Field on Lattice Strips

    Full text link
    We determine the general structure of the partition function of the qq-state Potts model in an external magnetic field, Z(G,q,v,w)Z(G,q,v,w) for arbitrary qq, temperature variable vv, and magnetic field variable ww, on cyclic, M\"obius, and free strip graphs GG of the square (sq), triangular (tri), and honeycomb (hc) lattices with width LyL_y and arbitrarily great length LxL_x. For the cyclic case we prove that the partition function has the form Z(Λ,Ly×Lx,q,v,w)=d=0Lyc~(d)Tr[(TZ,Λ,Ly,d)m]Z(\Lambda,L_y \times L_x,q,v,w)=\sum_{d=0}^{L_y} \tilde c^{(d)} Tr[(T_{Z,\Lambda,L_y,d})^m], where Λ\Lambda denotes the lattice type, c~(d)\tilde c^{(d)} are specified polynomials of degree dd in qq, TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} is the corresponding transfer matrix, and m=Lxm=L_x (Lx/2L_x/2) for Λ=sq,tri(hc)\Lambda=sq, tri (hc), respectively. An analogous formula is given for M\"obius strips, while only TZ,Λ,Ly,d=0T_{Z,\Lambda,L_y,d=0} appears for free strips. We exhibit a method for calculating TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} for arbitrary LyL_y and give illustrative examples. Explicit results for arbitrary LyL_y are presented for TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} with d=Lyd=L_y and d=Ly1d=L_y-1. We find very simple formulas for the determinant det(TZ,Λ,Ly,d)det(T_{Z,\Lambda,L_y,d}). We also give results for self-dual cyclic strips of the square lattice.Comment: Reference added to a relevant paper by F. Y. W

    Exact Results on Potts Model Partition Functions in a Generalized External Field and Weighted-Set Graph Colorings

    Full text link
    We present exact results on the partition function of the qq-state Potts model on various families of graphs GG in a generalized external magnetic field that favors or disfavors spin values in a subset Is={1,...,s}I_s = \{1,...,s\} of the total set of possible spin values, Z(G,q,s,v,w)Z(G,q,s,v,w), where vv and ww are temperature- and field-dependent Boltzmann variables. We remark on differences in thermodynamic behavior between our model with a generalized external magnetic field and the Potts model with a conventional magnetic field that favors or disfavors a single spin value. Exact results are also given for the interesting special case of the zero-temperature Potts antiferromagnet, corresponding to a set-weighted chromatic polynomial Ph(G,q,s,w)Ph(G,q,s,w) that counts the number of colorings of the vertices of GG subject to the condition that colors of adjacent vertices are different, with a weighting ww that favors or disfavors colors in the interval IsI_s. We derive powerful new upper and lower bounds on Z(G,q,s,v,w)Z(G,q,s,v,w) for the ferromagnetic case in terms of zero-field Potts partition functions with certain transformed arguments. We also prove general inequalities for Z(G,q,s,v,w)Z(G,q,s,v,w) on different families of tree graphs. As part of our analysis, we elucidate how the field-dependent Potts partition function and weighted-set chromatic polynomial distinguish, respectively, between Tutte-equivalent and chromatically equivalent pairs of graphs.Comment: 39 pages, 1 figur

    Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice

    Full text link
    We present exact calculations of the Potts model partition function Z(G,q,v)Z(G,q,v) for arbitrary qq and temperature-like variable vv on nn-vertex strip graphs GG of the honeycomb lattice for a variety of transverse widths equal to LyL_y vertices and for arbitrarily great length, with free longitudinal boundary conditions and free and periodic transverse boundary conditions. These partition functions have the form Z(G,q,v)=j=1NZ,G,λcZ,G,j(λZ,G,j)mZ(G,q,v)=\sum_{j=1}^{N_{Z,G,\lambda}} c_{Z,G,j}(\lambda_{Z,G,j})^m, where mm denotes the number of repeated subgraphs in the longitudinal direction. We give general formulas for NZ,G,jN_{Z,G,j} for arbitrary LyL_y. We also present plots of zeros of the partition function in the qq plane for various values of vv and in the vv plane for various values of qq. Explicit results for partition functions are given in the text for Ly=2,3L_y=2,3 (free) and Ly=4L_y=4 (cylindrical), and plots of partition function zeros are given for LyL_y up to 5 (free) and Ly=6L_y=6 (cylindrical). Plots of the internal energy and specific heat per site for infinite-length strips are also presented.Comment: 39 pages, 34 eps figures, 3 sty file

    Improving the Activity of Rh/Al2O3 Catalyst for NO Reduction by Na Addition in the Presences of H2O and O-2

    Get PDF
    The effect of Na addition on the performance of Rh/Al2O3 catalyst for NO reduction with CO in the presence of H2O and O-2 was investigated. The reacted catalysts were analyzed by the FTIR technique to identify the products for further investigation on the possible catalytic reaction mechanisms and the reasons behind the H2O poisoning. Experimental results show that the removal efficiency of NO by Rh/Al2O3 catalyst was 63% at 250 degrees C but that decreased as the H2O content increased. Adding Na to modify the Rh/ Al2O3 catalyst significantly enhanced the conversion of NO to 99% at 250-300 degrees C even as the H2O content was 1.6 vol%. The FTIR analyses results reveal that the abundant H2O in the flue gas can compete with NO to adsorb on the surfaces of Rh/Al2O3 and Rh-Na/Al2O3 catalysts and further enhance the formation of NO3 that reacts with H. The effects of H2O on Rh/Al2O3 and Rh-Na/Al2O3 catalysts can be eliminated by increasing the reaction temperature to higher than 300 degrees C. Rh-Na/Al2O3 is a feasible catalyst for NO reduction at such condition with relative high H2O and O-2 contents

    An efficient composite growing N-doped TiO2 on multi-walled carbon nanotubes through sol-gel process

    Get PDF
    High-activity, visible-light-driven photocatalysts were prepared by forming N-doped TiO2 on multi-walled carbon nanotubes (MWCNTs). The use of MWCNTs as the support in a N-doped TiO2 system favored electron trapping, because the recombination process could be retarded, thus promoting photocatalytic activity. The prepared photocatalysts were systematically characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunaure-Emmett-Teller (BET) spectroscopy, and UV-Vis diffuse reflectance spectroscopy (UV-Vis/DRS). The results indicated that the N-doped TiO2 coated on MWCNTs improved the surface area and slightly modified the optical properties of the composite. The activities of the photocatalysts were probed by photodegradation of methanol in the presence of visible light irradiation. The experimental results revealed that the strong interphase linkage between the MWCNTs and the N-doped TiO2 played a significant role in improving photocatalytic activity. However, the mechanical process for MWCNT-TiO2-x N (x) mixtures showed lower activity than just pure N-doped TiO2. In this study, N-doped TiO2 precursors coated with pretreated MWCNTs during a sol-gel process could effectively form a MWCNT-TiO2-x N (x) composite. The composite showed excellent activity and effectively enhanced the efficiency of N-doped TiO2 under the visible light region

    Potts model on recursive lattices: some new exact results

    Full text link
    We compute the partition function of the Potts model with arbitrary values of qq and temperature on some strip lattices. We consider strips of width Ly=2L_y=2, for three different lattices: square, diced and `shortest-path' (to be defined in the text). We also get the exact solution for strips of the Kagome lattice for widths Ly=2,3,4,5L_y=2,3,4,5. As further examples we consider two lattices with different type of regular symmetry: a strip with alternating layers of width Ly=3L_y=3 and Ly=m+2L_y=m+2, and a strip with variable width. Finally we make some remarks on the Fisher zeros for the Kagome lattice and their large q-limit.Comment: 17 pages, 19 figures. v2 typos corrected, title changed and references, acknowledgements and two further original examples added. v3 one further example added. v4 final versio

    On the Potts model partition function in an external field

    Full text link
    We study the partition function of Potts model in an external (magnetic) field, and its connections with the zero-field Potts model partition function. Using a deletion-contraction formulation for the partition function Z for this model, we show that it can be expanded in terms of the zero-field partition function. We also show that Z can be written as a sum over the spanning trees, and the spanning forests, of a graph G. Our results extend to Z the well-known spanning tree expansion for the zero-field partition function that arises though its connections with the Tutte polynomial

    Dimer coverings on the Sierpinski gasket with possible vacancies on the outmost vertices

    Full text link
    We present the number of dimers Nd(n)N_d(n) on the Sierpinski gasket SGd(n)SG_d(n) at stage nn with dimension dd equal to two, three, four or five, where one of the outmost vertices is not covered when the number of vertices v(n)v(n) is an odd number. The entropy of absorption of diatomic molecules per site, defined as SSGd=limnlnNd(n)/v(n)S_{SG_d}=\lim_{n \to \infty} \ln N_d(n)/v(n), is calculated to be ln(2)/3\ln(2)/3 exactly for SG2(n)SG_2(n). The numbers of dimers on the generalized Sierpinski gasket SGd,b(n)SG_{d,b}(n) with d=2d=2 and b=3,4,5b=3,4,5 are also obtained exactly. Their entropies are equal to ln(6)/7\ln(6)/7, ln(28)/12\ln(28)/12, ln(200)/18\ln(200)/18, respectively. The upper and lower bounds for the entropy are derived in terms of the results at a certain stage for SGd(n)SG_d(n) with d=3,4,5d=3,4,5. As the difference between these bounds converges quickly to zero as the calculated stage increases, the numerical value of SSGdS_{SG_d} with d=3,4,5d=3,4,5 can be evaluated with more than a hundred significant figures accurate.Comment: 35 pages, 20 figures and 1 tabl

    Oxygen radical-mediated oxidation reactions of an alanine peptide motif - density functional theory and transition state theory study

    Get PDF
    Background: Oxygen-base (O-base) oxidation in protein backbone is important in the protein backbone fragmentation due to the attack from reactive oxygen species (ROS). In this study, an alanine peptide was used model system to investigate this O-base oxidation by employing density functional theory (DFT) calculations combining with continuum solvent model. Detailed reaction steps were analyzed along with their reaction rate constants. Results: Most of the O-base oxidation reactions for this alanine peptide are exothermic except for the bond-breakage of the C-alpha-N bond to form hydroperoxy alanine radical. Among the reactions investigated in this study, the activated energy of OH alpha-H abstraction is the lowest one, while the generation of alkylperoxy peptide radical must overcome the highest energy barrier. The aqueous situation facilitates the oxidation reactions to generate hydroxyl alanine peptide derivatives except for the fragmentations of alkoxyl alanine peptide radical. The C-alpha-C-beta bond of the alkoxyl alanine peptide radical is more labile than the peptide bond. Conclusion: the rate-determining step of oxidation in protein backbone is the generation of hydroperoxy peptide radical via the reaction of alkylperoxy peptide radical with HO2. The stabilities of alkylperoxy peptide radical and complex of alkylperoxy peptide radical with HO2 are crucial in this O-base oxidation reaction
    corecore