31 research outputs found

    Theoretical description of the ferromagnetic π\pi -junctions near the critical temperature

    Full text link
    The theory of ferromagnetic Pi-junction near the critical temperature is presented. It is demonstrated that in the dirty limit the modified Usadel equation adequately describes the proximity effect in ferromagnets. To provide the description of an experimentally relevant situation, oscillations of the Josephson critical current are calculated as a function of ferromagnetic layer thickness for different transparencies of the superconductor-ferromagnet interfaces.Comment: 12 pages, 4 figures, submitted to Phys. Rev.

    Layered ferromagnet-superconductor structures: the π\pi state and proximity effects

    Full text link
    We investigate clean mutilayered structures of the SFS and SFSFS type, (where the S layer is intrinsically superconducting and the F layer is ferromagnetic) through numerical solution of the self-consistent Bogoliubov-de Gennes equations for these systems. We obtain results for the pair amplitude, the local density of states, and the local magnetic moment. We find that as a function of the thickness dFd_F of the magnetic layers separating adjacent superconductors, the ground state energy varies periodically between two stable states. The first state is an ordinary "0-state", in which the order parameter has a phase difference of zero between consecutive S layers, and the second is a "π\pi-state", where the sign alternates, corresponding to a phase difference of π\pi between adjacent S layers. This behavior can be understood from simple arguments. The density of states and the local magnetic moment reflect also this periodicity.Comment: 12 pages, 10 Figure

    Proximity effects and characteristic lengths in ferromagnet-superconductor structures

    Full text link
    We present an extensive theoretical investigation of the proximity effects that occur in Ferromagnet/Superconductor (F/SF/S) systems. We use a numerical method to solve self consistently the Bogoliubov-de Gennes equations in the continuum. We obtain the pair amplitude and the local density of states (DOS), and use these results to extract the relevant lengths characterizing the leakage of superconductivity into the magnet and to study spin splitting into the superconductor. These phenomena are investigated as a function of parameters such as temperature, magnet polarization, interfacial scattering, sample size and Fermi wavevector mismatch, all of which turn out to have important influence on the results. These comprehensive results should help characterize and analyze future data and are shown to be in agreement with existing experiments.Comment: 24 pages, including 26 figure

    Symmetries of Pairing Correlations in Superconductor-Ferromagnet Nanostructures

    Full text link
    Using selection rules imposed by the Pauli principle, we classify pairing correlations according to their symmetry properties with respect to spin, momentum, and energy. We observe that inhomogeneity always leads to mixing of even- and odd-energy pairing components. We investigate the superconducting pairing correlations present near interfaces between superconductors and ferromagnets, with focus on clean systems consisting of singlet superconductors and either weak or half-metallic ferromagnets. Spin-active scattering in the interface region induces all of the possible symmetry components. In particular, the long-range equal-spin pairing correlations have odd-frequency s-wave and even-frequency p-wave components of comparable magnitudes. We also analyze the Josephson current through a half-metal. We find analytic expressions and an interesting universality in the temperature dependence of the critical current in the tunneling limit.Comment: 20 pages, 5 figures, added citations, corrected typo

    Radiation induced oscillatory Hall effect in high mobility GaAs/AlGaAs devices

    Get PDF
    We examine the radiation induced modification of the Hall effect in high mobility GaAs/AlGaAs devices that exhibit vanishing resistance under microwave excitation. The modification in the Hall effect upon irradiation is characterized by (a) a small reduction in the slope of the Hall resistance curve with respect to the dark value, (b) a periodic reduction in the magnitude of the Hall resistance, RxyR_{xy}, that correlates with an increase in the diagonal resistance, RxxR_{xx}, and (c) a Hall resistance correction that disappears as the diagonal resistance vanishes.Comment: 4 pages text, 4 color figure

    Mixed-parity superconductivity in centrosymmetric crystals

    Full text link
    A weak-coupling formalism for superconducting states possessing both singlet (even parity) and triplet (odd parity) components of the order parameter in centrosymmetric crystals is developed. It is shown that the quasiparticle energy spectrum may be non-degenerate even if the triplet component is unitary. The superconducting gap of a mixed-parity state may have line nodes in the strong spin-orbit coupling limit. The pseudospin carried by the superconducting electrons is calculated, from which follows a prediction of a kink anomaly in the temperature dependence of muon spin relaxation rate. The anomaly occurs at the phase boundary between the bare triplet and mixed-parity states. The stability of mixed-parity states is discussed within Ginzburg-Landau theory. The results may have immediate application to the superconducting series Pr(Os,Ru)4Sb12.Comment: 5 pages, 2 figures. Final version accepted to PR

    Andreev conductance of a domain wall

    Get PDF
    At low temperatures, the transport through a superconductor-ferromagnet tunnel interface is due to tunneling of electrons in pairs. Exchange field of a monodomain ferromagnet aligns electron spins and suppresses the two electron tunneling. The presence of the domain walls at the SF interface strongly enhances the subgap current. The Andreev conductance is proven to be proportional to the total length of domain walls at the SF interface.Comment: 4 pages and 1 figur
    corecore