22 research outputs found

    Neurofibromatosis type 1 gene product (neurofibromin) associates with microtubules

    Full text link
    The neurofibromatosis type 1 (NF1) gene was recently identified by positional cloning and found to encode a protein with structural and functional homology to mammalian and yeast GTPase-activating proteins (GAPs). Using antibodies directed against the NF1 gene product, a protein of āˆ¼250kDa was identified and termed neurofibromin. Double-indirect immunofluorescent labeling with anti-neurofibromin and anti-tubulin antibodies demonstrates that neurofibromin associates with cytoplasmic microtubules. Immunoblotting of microtubule-enriched cytoplasmic fractions, using antibodies generated against neurofibromin, shows that neurofibromin copurifies with microtubules. When portions of neurofibromin are expressed in Sf9 insect cells they associate with polymerized microtubules; furthermore, the critical residues for this interaction reside within the GAP-related domain of neurofibromin. The unexpected association of neurofibromin with microtubules suggests that neurofibromin is involved in microtubule-mediated intracellullar signal transduction pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45544/1/11188_2005_Article_BF01233074.pd

    Chromosomal localization of 15 ion channel genes

    Full text link
    Several human Mendelian diseases, including the long-QT syndrome, malignant hyperthermia, and episodic ataxia/myokymia syndrome, have recently been demonstrated to be due to mutations in ion channel genes. Systematic mapping of ion channel genes may therefore reveal candidates for other heritable disorders. In this study, the GenBank and dbEST databases were used to identify members of several ion channel families (voltage-gated calcium and sodium cardiac chloride, and all classes of potassium channels). Genes and ESTs without prior map localization were identified based on GDB and OWL database information and 15 genes and ESTs were selected for mapping. Of these 15, only the serotonin receptor 5HT3R had been previously mapped to a chromosome. A somatic cell hybrid panel (SCH) was screened with an STS from each gene and, if necessary, the results verified by a second SCH panel. For three ESTs, rodent derived PCR products of the same size as the human STS precluded SCH mapping. For these three, human Pl clones were isolated and the genomic location was determined by metaphase FISH. These genes and ESTs can now be further evaluated as candidate genes for inherited cardiac, neuromuscular, and psychiatric disorders mapped to these chromosomes. Furthermore, the ESTs developed in this study can be used to isolate genomic clones, enabling the determination of each transcript's genomic structure and physical map location. This approach may also be applicable to other gene families and may aid in the identification of candidate genes for groups of related heritable disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45548/1/11188_2006_Article_BF02369898.pd

    Applying Agents to Bioinformatics in GeneWeaver

    Get PDF
    Recent years have seen dramatic and sustained growth in the amount of genomic data being generated, including in late 1999 the first complete sequence of a human chromosome. The challenge now faced by biological scientists is to make sense of this vast amount of accumulated and accumulating data. Fortunately, numerous databases are provided as resources containing relevant data, and there are similarly many available programs that analyse this data and attempt to understand it. However, the key problem in analysing this genomic data is how to integrate the software and primary databases in a flexible and robust way. The wide range of available programs conform to very different input, output and processing requirements, typically with little consideration given to issues of integration, and in many cases with only token efforts made in the direction of usability. In this paper, we introduce the problem domain and describe GeneWeaver, a multi-agent system for genome analys..

    Quality of Algorithms for Sequence Comparison

    No full text
    Pair-wise sequence alignment is the basic method of comparative analysis of proteins and nucleic acids. Studying the results of the alignment one has to consider two questions: (1) did the program find all the interesting similarities (ā€œsensitivityā€) and (2) are all the found similarities interesting (ā€œselectivityā€). Definitely, one has to specify, what alignments are considered as the interesting ones. Analogous questions can be addressed to each of the obtained alignments: (3) which part of the aligned positions are aligned correctly (ā€œconfidenceā€) and (4) does alignment contain all pairs of the corresponding positions of compared sequences (ā€œaccuracyā€). Naturally, the answer on the questions depends on the definition of the correct alignment. The presentation addresses the above two pairs of questions that are extremely important in interpreting of the results of sequence comparison

    Stage-specific Requirement of a Mitogen-activated Protein Kinase by Trypanosoma brucei

    No full text
    In cycling between the mammalian host and the tsetse fly vector, African trypanosomes undergo adaptive differentiation steps that are coupled to growth control. The signaling pathways underlying these cellular processes are largely unknown. Mitogen-activated protein kinases (MAPKs) are known mediators of growth and differentiation in other eukaryotic organisms. To establish the function of a MAPK homologue, TbMAPK2, in T. brucei, a null mutant was constructed. Bloodstream forms of a Ī”mapk2/Ī”mapk2 clone were able to grow normally and exhibited no detectable phenotype. When these cells were triggered to differentiate in vitro, however, they developed to the procyclic (fly midgut) form with delayed kinetics and subsequently underwent cell cycle arrest. Introduction of an ectopic copy of the TbMAPK2 gene into the null mutant restored its ability to differentiate and to divide. In contrast, a TbMAPK2 mutant, in which the T190 and Y192 residues of the activating phosphorylation site were replaced by A and F, was unable to restore the growth and differentiation phenotypes. Analysis of the DNA content and the nucleus/kinetoplast configuration of individual cells showed that the null mutant was arrested in all phases of the cell cycle and that 25ā€“30% of the cells had failed to segregate their nucleus and kinetoplast correctly. This implies that cell cycle progression by the procyclic form depends on a constitutive stimulus exerted by the signaling cascade operating through TbMAPK2
    corecore