10 research outputs found

    Dynamic model of basic oxygen steelmaking process based on multi-zone reaction kinetics : model derivation and validation

    Get PDF
    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the BOF operation. The three reaction zones, (i) jet impact zone (ii) slag-bulk metal zone (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process

    A mathematical model for reactions during top-blowing in the AOD process:derivation of the model

    No full text
    Abstract In an earlier work, a fundamental mathematical model was proposed for side-blowing operation in the argon–oxygen decarburization (AOD) process. The purpose of this work is to present a new model, which focuses on the reactions during top-blowing in the AOD process. The model considers chemical reaction rate phenomena between the gas jet and the metal bath as well as between the gas jet and metal droplets. The rate expressions were formulated according to a law of mass action-based method, which accounts for the mass-transfer resistances in the liquid metal, gas, and slag phases. The generation rate of the metal droplets was related to the blowing number theory. This paper presents the description of the model, while validation and preliminary results are presented in the second part of this work
    corecore