6 research outputs found

    Linear stability of the Lagrangian triangle solutions for quasihomogeneous potentials

    Full text link
    In this paper we study the linear stability of the relative equilibria for homogeneous and quasihomogeneous potentials. Firstly, in the case the potential is a homogeneous function of degree −a-a, we find that any relative equilibrium of the nn-body problem with a>2a>2 is spectrally unstable. We also find a similar condition in the quasihomogeneous case. Then we consider the case of three bodies and we study the stability of the equilateral triangle relative equilibria. In the case of homogeneous potentials we recover the classical result obtained by Routh in a simpler way. In the case of quasihomogeneous potentials we find a generalization of Routh inequality and we show that, for certain values of the masses, the stability of the relative equilibria depends on the size of the configuration.Comment: 21 pages 4 figure

    On the Global Existence of Bohmian Mechanics

    Get PDF
    We show that the particle motion in Bohmian mechanics, given by the solution of an ordinary differential equation, exists globally: For a large class of potentials the singularities of the velocity field and infinity will not be reached in finite time for typical initial values. A substantial part of the analysis is based on the probabilistic significance of the quantum flux. We elucidate the connection between the conditions necessary for global existence and the self-adjointness of the Schr\"odinger Hamiltonian.Comment: 35 pages, LaTe
    corecore