443 research outputs found

    A modelling approach to estimate the transmissibility of SARS-CoV 2 during periods of high, low, and zero case incidence

    Get PDF
    Against a backdrop of widespread global transmission, a number of countries have successfully brought large outbreaks of COVID-19 under control and maintained near-elimination status. A key element of epidemic response is the tracking of disease transmissibility in near real-time. During major outbreaks, the effective reproduction number can be estimated from a time-series of case, hospitalisation or death counts. In low or zero incidence settings, knowing the potential for the virus to spread is a response priority. Absence of case data means that this potential cannot be estimated directly. We present a semi-mechanistic modelling framework that draws on time-series of both behavioural data and case data (when disease activity is present) to estimate the transmissibility of SARS-CoV-2 from periods of high to low – or zero – case incidence, with a coherent transition in interpretation across the changing epidemiological situations. Of note, during periods of epidemic activity, our analysis recovers the effective reproduction number, while during periods of low – or zero – case incidence, it provides an estimate of transmission risk. This enables tracking and planning of progress towards the control of large outbreaks, maintenance of virus suppression, and monitoring the risk posed by re-introduction of the virus. We demonstrate the value of our methods by reporting on their use throughout 2020 in Australia, where they have become a central component of the national COVID-19 response

    GINA 2020: Potential impacts, opportunities and challenges for primary care

    Get PDF
    In 2019, it was reported that changes to asthma management reported in the Global Initiative for Asthma "…might be considered the most fundamental changes in asthma management in 30 years." These changes refer to the recommendation that the treatment of asthma in adolescents and adults would no longer include short acting ß2 agonist (SABA) only, but that people with asthma should receive either symptom-driven inhaled corticosteroids (ICS)-containing treatment (mild asthma) or daily ICS-containing treatment. The fundamental reason for this shift was driven by concerns about the risks and consequences associated with SABA only treatment, the need to improve the day-to-day management of asthma symptoms to prevent exacerbations and emergent evidence. These recommendations have subsequently been reinforced and characterized in GINA 2020 and it is reasonable to say that they are significant: not only in terms of an asthma management framework, but also as a management approach in practice. This opinion article specifically focuses on opportunities and challenges associated with the implementation of GINA 2020 in primary care practice which need to be recognised and addressed if the shift in asthma treatment paradigm is to be successfully implemented into day-to-day practice

    Absence of Persistent Magnetic Oscillations in Type-II Superconductors

    Full text link
    We report on a numerical study intended to examine the possibility that magnetic oscillations persist in type II superconductors beyond the point where the pairing self-energy exceeds the normal state Landau level separation. Our work is based on the self-consistent numerical solution for model superconductors of the Bogoliubov-deGennes equations for the vortex lattice state. In the regime where the pairing self-energy is smaller than the cyclotron energy, magnetic oscillations resulting from Landau level quantization are suppressed by the broadening of quasiparticle Landau levels due to the non-uniform order parameter of the vortex lattice state, and by splittings of the quasiparticle bands. Plausible arguments that the latter effect can lead to a sign change of the fundamental harmonic of the magnetic oscillations when the pairing self-energy is comparable to the cyclotron energy are shown to be flawed. Our calculations indicate that magnetic oscillations are strongly suppressed once the pairing self-energy exceeds the Landau level separation.Comment: 7 pages, revtex, 7 postscript figure

    The Role of Alginate Hydrogels as a Potential Treatment Modality for Spinal Cord Injury: A Comprehensive Review of the Literature

    Get PDF
    Objective To comprehensively characterize the utilization of alginate hydrogels as an alternative treatment modality for spinal cord injury (SCI). Methods An extensive review of the published literature on studies using alginate hydrogels to treat SCI was performed. The review of the literature was performed using electronic databases such as PubMed, EMBASE, and OVID MEDLINE electronic databases. The keywords used were “alginate,” “spinal cord injury,” “biomaterial,” and “hydrogel.” Results In the literature, we identified a total of 555 rat models that were treated with alginate scaffolds for regenerative biomarkers. Alginate hydrogels were found to be efficient and promising substrates for tissue engineering, drug delivery, neural regeneration, and cellbased therapies for SCI repair. With its ability to act as a pro-regenerative and antidegenerative agent, the alginate hydrogel has the potential to improve clinical outcomes. Conclusion The emerging developments of alginate hydrogels as treatment modalities may support current and future tissue regenerative strategies for SCI

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF-kappaB signalling

    Get PDF
    Objective: Our previous coeliac disease genome-wide association study (GWAS) implicated risk variants in the human leucocyte antigen (HLA) region and eight novel risk regions. To identify more coeliac disease loci, we selected 458 single nucleotide polymorphisms (SNPs) that showed more modest association in the GWAS for genotyping and analysis in four independent cohorts. Design: 458 SNPs were assayed in 1682 cases and 3258 controls from three populations (UK, Irish and Dutch). We combined the results with the original GWAS cohort (767 UK cases and 1422 controls); six SNPs showed association with p Results: We identified two novel coeliac disease risk regions: 6q23.3 (OLIG3-TNFAIP3) and 2p16.1 (REL), both of which reached genome-wide significance in the combined analysis of all 2987 cases and 5273 controls (rs2327832 p= 1.3x10(-08), and rs842647 p= 5.26x10(-07)). We investigated the expression of these genes in the RNA isolated from biopsies and from whole blood RNA. We did not observe any changes in gene expression, nor in the correlation of genotype with gene expression. Conclusions: Both TNFAIP3 (A20, at the protein level) and REL are key mediators in the nuclear factor kappa B (NF-kappa B) inflammatory signalling pathway. For the first time, a role for primary heritable variation in this important biological pathway predisposing to coeliac disease has been identified. Currently, the HLA risk factors and the 10 established non-HLA risk factors explain similar to 40% of the heritability of coeliac disease
    corecore