21 research outputs found

    A Discrete Four Stroke Quantum Heat Engine Exploring the Origin of Friction

    Get PDF
    The optimal power performance of a first principle quantum heat engine model shows friction-like phenomena when the internal fluid Hamiltonian does not commute with the external control field. The model is based on interacting two-level-systems where the external magnetic field serves as a control variable.Comment: 4 pages 3 figure

    Quantum thermodynamic processes: A control theory for machine cycles

    Full text link
    The minimal set of thermodynamic control parameters consists of a statistical (thermal) and a mechanical one. These suffice to introduce all the pertinent thermodynamic variables; thermodynamic processes can then be defined as paths on this 2-dimensional control plane. Putting aside coherence we show that for a large class of quantum objects with discrete spectra and for the cycles considered the Carnot efficiency applies as a universal upper bound. In the dynamic (finite time) regime renormalized thermodynamic variables allow to include non-equilibrium phenomena in a systematic way. The machine function ceases to exist in the large speed limit; the way, in which this limit is reached, depends on the type of cycle considered.Comment: 14 pages, 12 figures, Replaced by version accepted for publication in European Physical Journal

    Bounds and phase diagram of efficiency at maximum power for tight-coupling molecular motors

    Full text link
    The efficiency at maximum power (EMP) for tight-coupling molecular motors is investigated within the framework of irreversible thermodynamics. It is found that the EMP depends merely on the constitutive relation between the thermodynamic current and force. The motors are classified into four generic types (linear, superlinear, sublinear, and mixed types) according to the characteristics of the constitutive relation, and then the corresponding ranges of the EMP for these four types of molecular motors are obtained. The exact bounds of the EMP are derived and expressed as the explicit functions of the free energy released by the fuel in each motor step. A phase diagram is constructed which clearly shows how the region where the parameters (the load distribution factor and the free energy released by the fuel in each motor step) are located can determine whether the value of the EMP is larger or smaller than 1/2. This phase diagram reveals that motors using ATP as fuel under physiological conditions can work at maximum power with higher efficiency (>1/2>1/2) for a small load distribution factor (<0.1<0.1).Comment: 5 pages, 4 figure
    corecore