18 research outputs found

    Three-Dimensional Geometric Analysis of Balloon-Expandable Covered Stents Improves Classification of Complications after Fenestrated Endovascular Aneurysm Repair

    Get PDF
    In balloon-expandable covered stent (BECS) associated complications after fenestrated endovascular aneurysm repair (FEVAR), geometric analysis may determine the cause of failure and influence reintervention strategies. This study retrospectively classifies BECS-associated complications based on computed tomographic angiography (CTA) applied geometric analysis. BECS-associated complications of FEVAR-patients treated in two large vascular centers between 2012 and 2021 were included. The post-FEVAR CTA scans of complicated Advanta V12 BECSs were analyzed geometrically and complications were classified according to its location in the BECS. BECS fractures were classified according to an existing classification system. In 279 FEVAR-patients, 34 out of the 683 included Advanta V12 BECS (5%) presented with a complication. Two Advanta V12 complications occurred during the FEVAR procedure and 32 occurred during follow-up of which five post-FEVAR CTA scans were missing or not suitable for analysis. In the remaining 27 BECSs complications were classified as (endoleaks (n = 8), stenoses (n = 4), occlusions (n = 6), fractures (n = 3), and a combination of complications (n = 6)). All BECSs associated complications after FEVAR with available follow up CTA scans could be classified. Geometric analysis of BECS failure post-FEVAR can help to plan the reintervention strategy

    Effervescence in champagne and sparkling wines: From bubble bursting to droplet evaporation

    No full text
    International audienceWhen a bubble reaches an air-liquid interface, it ruptures, projecting a multitude of tiny droplets in the air. Across the oceans, an estimated 1018 to 1020 bubbles burst every second, and form the so called sea spray, a major player in earth's climate system. At a smaller scale, in a glass of champagne about a million bubbles nucleate on the wall, rise towards the surface and burst, giving birth to a particular aerosol that holds a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in simple liquids, we depict each step of this effervescence, from bubble bursting to drop evaporation. In particular, we propose simple scaling laws for the jet velocity and the top drop size. We unravel experimentally the intricate roles of bubble shape, capillary waves, gravity, and liquid properties in the jet dynamics and the drop detachment. We demonstrate how damping action of viscosity produces faster and smaller droplets and more generally how liquid properties enable to control the bubble bursting aerosol characteristics. In this context, the particular case of Champagne wine aerosol is studied in details and the key features of this aerosol are identified. We demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. Conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of aerosol characteristics and flavor release during sparkling wine tasting, a major issue of the sparkling wine industry
    corecore