46 research outputs found

    Susceptibility of non-crystalline ferromagnetic FeF2

    No full text
    In the temperature range 150 K > T > 25 K the magnetic susceptibility of non-crystalline FeF2 can be described by a Curie-Weiss law. A paramagnetic Curie temperature of Ξ = (22 ± 1) K and an effective moment of peff = (5.2 ± 0.1) ÎŒB are found. Temperature and field dependence of the magnetization between 15 K-20.5 K indicate superparamagnetic behaviour. At lower temperatures the magnetization shows hysteresis and a slightly time dependent remanence. The observation of moments which approach 4 ÎŒ B/Fe2+ implies that the ordered state is ferromagnetic.On peut dĂ©crire la susceptibilitĂ© magnĂ©tique de FeF2 non cristallin par une loi de Curie-Weiss entre 25 K et 150 K. On trouve une tempĂ©rature de Curie paramagnĂ©tique Ξ=(22±1) K et un moment effectif p eff = (5,2 ± 0,1) ÎŒB. Entre 15 K et 20,5 K l'aimantation varie avec la tempĂ©rature et le champ, indiquant un comportement superparamagnĂ©tique. Aux tempĂ©ratures infĂ©rieures, l'aimantation montre de l'hystĂ©rĂ©sis et une rĂ©manence qui dĂ©pend faiblement du temps. Les moments approchant 4 ÎŒB/Fe2+ impliquent que l'Ă©tat ordonnĂ© est ferromagnĂ©tique

    LOW TEMPERATURE PHASES OF MICROCRYSTALLINE FeCl3

    No full text
    Les spectres Mössbauer de FeCl3 dĂ©posĂ© Ă  basse tempĂ©rature Ă  partir de la vapeur montrent deux doublets quadrupolaires au-dessus de 6,5 K et des Ă©clatements magnĂ©tiques hyperfins en dessous de 6,5 K. Par chauffage Ă  300 K, les Ă©chantillons peuvent ĂȘtre transformĂ©s irrĂ©versiblement en l'Ă©tat cristallin normal. En dessous de leurs tempĂ©ratures de transition magnĂ©tique, les spectres des phases trempĂ©es Ă  partir de la vapeur ainsi que ceux de la phase cristalline normale montrent des effets de relaxation qui sont attribuĂ©s Ă  des fluctuations superparamagnĂ©tiques. Par opposition aux halogĂ©nures ferreux amorphes, les courbes d'aimantation des phases de FeCl3 trempĂ©es Ă  partir de la vapeur ont la mĂȘme dĂ©pendance fonctionnelle que la phase cristalline. On suggĂšre que la dĂ©position de FeCl3 Ă  basse tempĂ©rature conduit Ă  des structures microcristallines plutĂŽt qu'amorphes.Mössbauer spectra of FeCl3, vapour deposited at low temperatures, show two quadrupole doublets above 6.5 K and magnetic hyperfine splittings below 6.5 K. Upon heating to 300 K the samples can be transformed irreversibly to the normal crystalline phase. Below their magnetic transition temperatures the spectra of both vapour quenched phases and of the normal crystalline phase exhibit relaxation effects which are interpreted as superparamagnetic fluctuations. In contrast to the amorphous ferrous halides, the magnetization curves of the vapour quenched phases of FeCl3 show the same functional dependence as the crystalline phase. It is suggested that the low temperature deposition of FeCl3 leads to microcrystalline rather than to amorphous structures

    PHASE TRANSFORMATIONS ON ANNEALING OF NON-CRYSTALLINE FERROUS HALIDES

    No full text
    Des échantillons non cristallins de FeF2, FeCl2 et FeBr2 obtenus par condensation de vapeurs à basse température, ont été convertis en phase cristalline par recuit à des températures allant jusqu'à 800 K. On trouve que FeCl2 et FeBr2 ne se convertissent jamais directement de l'état non cristallin en l'état cristallin habituel. Ils forment entre 60 et 350 K une phase intermédiaire inconnue. Par contre, FeF2 se convertit directement. Ceci a lieu à des températures beaucoup plus élevées (~ 800 K). L'existence d'une phase intermédiaire pour FeCl2 et FeBr2 mais non pour FeF2, est discutée en fonction des différents changements structuraux ayant lieu lors du processus de recristallisation des dihalogénures de fer non cristallins.Non-crystalline samples of FeF2, FeCl2 and FeBr2 obtained from vapour deposition at low temperatures were converted into the crystalline phase by annealing with temperatures up to 800 K. It is found that FeCl2 and FeBr2 never convert directly from the non-crystalline to the usual crystalline state. They form an unknown intermediate phase in the temperature range between 60 and 350 K. In contrast, FeF2 shows direct conversion. This occurs at much higher temperatures (~ 800 K). The existence of an intermediate phase for FeCl2 and FeBr2, but not for FeF2, is discussed in terms of the different structural changes taking place in the recrystallization processes of the non-crystalline iron di-halides

    RAYLEIGH SCATTERING OF MÖSSBAUER RADIATION ON VAPOUR-QUENCHED Te

    No full text
    Du tellure non cristallin a Ă©tĂ© prĂ©parĂ© par dĂ©position d'un faisceau molĂ©culaire sur un substrat de mylar maintenu Ă  80K. La structure amorphe est fortement influencĂ©e par l'Ă©paisseur de l'Ă©chantillon. Des Ă©chantillons minces (≀ 105Å) ont Ă©tĂ© chauffĂ©s Ă  partir de 80K Ă  une vitesse de ~15K/jour. A 245K on observe une diminution brusque de l'intensitĂ© de diffusion Rayleigh Ă©lastique. Ceci correspond Ă  une augmentation de l'amplitude moyenne de vibration atomique √<x2> qui passe de ~0.15Å Ă  ~0.32Å. AprĂšs avoir maintenu l'Ă©chantillon pendant 10 heures aux alentours de 245K, on retrouve la valeur initiale de √<x2>. Les spectres de RX montrent que cette variation de √<x2> est liĂ©e Ă  un rĂ©arrangement structural. Dans le mĂȘme intervalle de tempĂ©rature, des Ă©chantillons Ă©pais cristallisent et ne prĂ©sentent que de faibles anomalies de √<x2>.Non-crystalline Te was prepared by deposition from a molecular beam onto a mylar substrate kept at 80K. The amorphous structure is strongly influenced by sample thickness. Thin samples (≀ 105Å) were heated from 80K at a rate of ~15K/day. At 245K a sudden decrease in the intensity of elastic Rayleigh scattering was observed. This corresponds to an increase in the mean atomic vibration amplitude √<x2> from ~0.15Å to ~0.32Å. After keeping the samples for ten hours near 245K the initial value of √<x2> was recovered. The X-ray pattern of the sample show that this change in √<x2> is connected with a structural re-arrangement. In the same temperature range thick samples undergo crystallization where anomalies in √<x2> are only weakly present

    Determination of the 57Co hyperfine field in Pd(57Co) from Mössbauer emission spectra in the regime of fast relaxation

    No full text
    Mössbauer emission spectra obtained on Pd(57Co) below ∌ 400 mK under an applied external magnetic field show a broadening of the 57Fe resonance lines and indicate an unexpectedly low polarization of the 57Co nucleus. The experimental data are consistently explained by a perpendicular component of relaxation acting on the 57Fe (I = 3/2) and (I = 5/2) nuclear levels.Les spectres d'Ă©mission Mössbauer obtenus pour Pd(57Co) au-dessous de ∌ 400 mK dans des champs magnĂ©tiques externes montrent une augmentation de la largeur de la raie rĂ©sonnante de 57Fe et indiquent une polarisation de noyau de 57CO plus faible qu'attendu. Les rĂ©sultats expĂ©rimentaux sont expliquĂ©s de façon consistante par une composante perpendiculaire de la relaxation opĂ©rant sur les niveaux (I = 3/2) et (I = 5/2) de noyau de 57Fe

    PROPERTIES OF NON - CRYSTALLINE EuIG AND DyIG OBTAINED FROM MÖSSBAUER AND MAGNETIZATION MEASUREMENTS

    No full text
    Non-crystalline (nc) EuIG and DyIG have been prepared by dc-sputtering. Mössbauer data on 57Fe, 151Eu and 161Dy reveal sharp magnetic transitions at Tm= 62 K and 70 K for nc EuIG and DyIG, respectively. The 57Fe hyperfine (hf) spectra consist of three superpositioned patterns for Fe3+ in tetrahedral and octahedral and for Fe2+ in tetrahedral oxygen coordination. The saturation hf fields are reduced compared to the values of the corresponding crystalline materials. The induced hf field at 151Eu is only 1/8 of that for crystalline EuIG. The microchemical composition and structure of the nc materials can be satisfactorily explained by a small oxygen deficiency due to preferential oxygen sputtering. Macroscopic magnetization suggests ferrimagnetic order possibly of sperimagnetic type. Although a part of the deviations of the magnetic hf parameters from the values for the corresponding crystalline substances can be explained by a distribution in the molecular field, the strong reduction of Tm must be attributed to a decrease of the average molecular field due to the distorted superexchange bonds
    corecore