16 research outputs found

    Human Metabolism Of Polyphenols From Extra Virgin Olive Oil

    No full text
    It is well established that food is not considered to be mere nutritional components for maintaining human life. There are a broad number of studies reporting that many foods may provide a health benefit beyond basic nutrition. Within this context, extra virgin olive oil (EVOO) has been related to the prevention of some types of cancers and the reduced risk of coronary heart diseases. This is mainly due to its high concentration of a broad variety of phenolic compounds, such as phenyl ethyl alcohols (tyrosol, hydroxytyrosol), phenolic acids (4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid, vanillic acid, ferulic acid, caffeic acid), flavonoids (apigenin, luteolin), secoiridoids (oleuropein and ligstroside aglycons) and lignans [(+)-pinoresinol, (+)-acetoxypinoresinol)]. In the human organism these polyphenols are metabolized and form different compounds. Thus the study of their properties is highly important with regards to understanding their functionality. The aglycones can be absorbed from the mall intestine; however, most polyphenols are in the form of esters, glycosides, or polymers that cannot be absorbed in their native form. Thus, these compounds must be hydrolyzed by intestinal enzymes or by colonic microflora in order to be absorbed. During the course of absorption, polyphenols are conjugated in the small intestine and later in the liver, through methylation, sulfation, and glucuronidation reactions. In the blood, polyphenols are conjugated derivatives bound to albumin. They penetrate into tissues where they are metabolized and then eliminated in urine and bile. For example, hydroxytyrosol shows strong antioxidant activity. In spite of this compound's great absorption capacity in the human body, its bioavailability is low. It is reported in the literature that the oleuropeins are not absorbed in the small intestine, but instead, quickly degradated in the large intestine to yield hydroxytyrosol. © 2012 Nova Science Publishers, Inc. All rights reserved.249258Bai, C., Yan, X., Takenga, M., Sekiya, K., Nagata, T., Determination of synthetic hydroxytyrosol in rat plasma by CG-MS (1998) Journal of Agricultural and Food Chemistry, 46, pp. 3998-4001Bendini, A., Cerretani, L., Carrasco-Pancorbo, A., Gómez-Caravaca, A.M., Segura-Carretero, A., Fernández-Gutiérrez, A., Lercker, G., Phenolic Molecules in Virgin Olive Oils: a Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade (2007) Molecules, 12, pp. 1679-1719Bermúdez, B., Pacheco, Y.M., López, S., Abia, R., Muriana, F.J.G., Digestion and absorption of olive oil (2004) Grasas y Aceites, 55, pp. 1-10Bisignano, G., Tomaino, A., Lo Cascio, R., Crisafi, G., Uccella, N., Saija, A., On the in-vitro antiomicrobial activity of oleuropein and hydroxytyrosol (1999) The Journal of Pharmacy and Pharmacology, 31, pp. 971-974Boskou, D., Olive oil (2000) World Review of Nutrition and Dietetics, 87, pp. 56-77Corona, G., Tzounis, X., Assunta-Dessa, M., Deiana, M., Debnam, E.S., Visioli, F., The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation (2006) Free Radical Research, 40, pp. 647-658D'Angelo, S., Manna, C., Migliardi, V., Mazzoni, O., Morrica, P., Capasso, G., Pharmacokinetics and metabolism of hydroxytyrosol, a natural antioxidant from olive oil (2001) Drug Metabolism and Disposition, 11, pp. 1492-1498Goldstein, D.S., Swoboda, K.J., Miles, J.M., Coppack, S.W., Nemman, A., Holmes, C., Lamensdorf, I., Eisenhofer, G., Sources and physiological significance of plasma dopamine sulfate (1999) The Journal of Clinical Endocrinology & Metabolism, 84, pp. 2528-2531González-Santiago, M., Fonollá, J., Lopez-Huertas, E., Human absorption of a supplement containing purified hydroxytyrosol, a natural antioxidant from olive oil, and evidence for its transient association with low-density lipoproteins (2010) Pharmacological Research, 61, pp. 364-370Khymenets, O., Joglar, J., Clapes, P., Parella, T., Covas, M.I., de la Torre, R., Biocatalyzed synthesis and structural characterization of monoglucuronides of hydroxytyrosol, tyrosol, homovanillic alcohol and 3-(4'-hydroxyphenyl)propanol (2006) Advanced Synthesis & Catalysis, 348, pp. 2155-2162Manna, C., Galletti, P., Maisto, G., Cucciolla, V., D'Angelo, S., Zappia, V., Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells (2000) FEBS Letters, 470, pp. 341-344Mardh, G., Vallee, B.L., Human class I alcohol dehydrogenases catalyze the interconversion of alcohols and aldehydes in the metabolism of dopamine (1986) Biochemistry, 25, pp. 7279-7282Mateos, R., Goya, L., Bravo, L., Metabolism of the olive oil phenols hydroxytyrosol, tyrosol and hydroxytyrosyl acetate by human hepatoma HepG2 cells (2005) Journal of Agricultural and Food Chemistry, 53, pp. 9897-9905Miró-Casas, E., Covas, M., Fitó, M., Farrá-Albadalejo, M., Marrugat, J., Torre, R., Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans (2003) European Journal of Clinical Nutrition, 57, pp. 186-190Perez-Jimenez, F., International conference on the healthy effect of virgin olive oil (2005) European Journal of Clinical Investigation, 35, pp. 421-424Scalbert, A., Williamson, G., Dietary intake and bioavailability of polyphenols (2000) Journal of Nutrition, 130, pp. 2073-2085Suárez, M., Valls, R.M., Romero, M., Macià, A., Fernández, S., Giralt, M., Solà, R., Motilva, M., Bioavailability of phenols from a phenol-enriched olive oil (2011) British Journal of Nutrition, pp. 1-11Townsend, C.M., (2006) Sabiston-Tratado de Cirurgia, 2. , 17a Edition, BrazilTrichopoulou, A., Vasilopoulou, E., Mediterranean diet and longevity (2000) The British Journal of Nutrition, 84, pp. 205-209Tuck, K.L., Hayball, P.J., Major phenolic compounds in olive oil: metabolism and health effects (2002) Journal of Nutritional Biochamistry, 13, pp. 636-644Tuck, K.L., Freeman, M.P., Hayball, P.J., Stretch, G.L., Stupans, I., The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats (2001) The Journal of Nutrition, 131, pp. 1993-1996Visioli, F., Galli, C., Olive oil: more than just oleic acid (2000) The American Journal of Clinical Nutrition, 72, p. 853Yaqoob, P., Knapper, J.A., Webb, D.H., Williams, C.M., Newsholme, E.A., Calder, P.C., Effect of olive oil on immune function in middle-aged men (1998) The American Journal of Clinical Nutrition, 67, pp. 129-13

    Enantioselective Behavior Of Lipases From Aspergillus Niger Immobilized In Different Supports

    No full text
    Considering the extraordinary microbial diversity and importance of fungi as enzyme producers, the search for new biocatalysts with special characteristics and possible applications in biocatalysis is of great interest. Here, we report the performance in the resolution of racemic ibuprofen of a native enantioselective lipase from Aspergillus niger, free and immobilized in five types of support (Accurel EP-100, Amberlite MB-1, Celite, Montmorillonite K10 and Silica gel). Amberlite MB-1 was found to be the best support, with a conversion of 38.2%, enantiomeric excess of 50.7% and enantiomeric ratio (E value) of 19 in 72 h of reaction. After a thorough optimization of several parameters, the E value of the immobilized Aspergillus niger lipase was increased (E = 23) in a shorter reaction period (48 h) at 35°C. Moreover, the immobilized Aspergillus niger lipase maintained an esterification activity of at least 80% after 8 months of storage at 4°C and could be reused at least six times. © 2009 Society for Industrial Microbiology.367949954Adams, S.S., Bresloff, P., Mason, G.C., Pharmacological difference between the optical isomers of ibuprofen: Evidence for metabolic inversion of the (-)-isomer (1976) J Pharm Pharmacol, 28, pp. 156-157Bosley, J.A., Peilow, A.D., Immobilization of lipases on porous polypropylene: Reduction in esterification efficiency at low loading (1997) JAOCS, Journal of the American Oil Chemists' Society, 74 (2), pp. 107-111Carvalho, P.D.O., Calafatti, S.Ap., Marassi, M., Da Silva, D.M., Contesini, F.J., Bizaco, R., Macedo, G.A., Potential of enantioselective biocatalysis by microbial lipases (2005) Quimica Nova, 28 (4), pp. 614-621Carvalho, P.O., Contesini, F.J., Ikegaki, M., Enzymatic resolution of (R, S)- ibuprofen and (R, S)-ketoprofen by microbial lipases from native and commercial sources (2006) Braz J Microbiol, 37, pp. 329-337. , 10.1590/S1517-83822006000300024Chen, C.-S., Fujimoto, Y., Girdaukas, G., Sih, C.J., Quantitative analyses of biochemical kinetic resolutions of enantiomers (1982) J Am Chem Soc, 104, pp. 7294-7299. , 10.1021/ja00389a064Chen, J.-C., Tsai, S.-W., Enantioselective synthesis of (S)-ibuprofen ester prodrug in cyclohexane by Candida rugosa lipase immobilized on Accurel MP1000 (2000) Biotechnol Prog, 16, pp. 986-992. , 10.1021/bp0000961Da Silva, V.C.F., Contesini, F.J., Carvalho, P.O., Characterization and catalytic activity of free and immobilized lipase from Aspergillus niger: A comparative study (2008) J Braz Chem Soc, 8, pp. 1468-1474Faber, K., (2000) Biotransformation in Organic Chemistry, , 4 Springer BerlinGandhi, N.N., Sawant, S.B., Joshi, J.B., Studies on the lipozyme catalyzed synthesis of butyl laureate (1995) Biotechnol Bioeng, 46, pp. 1-12. , 10.1002/bit.260460102Ivanov, A.E., Schneider, M.P., Methods for immobilization of lipase and their use for ester synthesis (1997) J Mol Catal B Enzym, 3, pp. 303-309. , 10.1016/S1381-1177(97)00012-XLee, G., Kim, J., Lee, J.-H., Development of magnetically separable polyaniline nanofibers for the enzyme immobilization and recovery (2008) Enzyme Microb Technol, 4, pp. 466-472. , 10.1016/j.enzmictec.2007.12.006Long, W.S., Kamaruddin, A.H., Bhatia, S., A comparative study of palm oil hydrolysis by C. rugosa lipase in packed bed reactor: Covalent bound vs. adsorbed to Amberlite MB-1 (2003) J Inf Technol, 12, pp. 37-55Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin Phenol Reagent (1951) J Biol Chem, 193, pp. 265-275Persson, M., Mladenoska, I., Wehtje, E., Adlercreutz, P., Preparation of lipases for use in organic solvents (2002) Enzyme Microb Technol, 31, pp. 833-841. , 10.1016/S0141-0229(02)00184-9Serri, N.A., Kamaruddin, A.H., Long, W.S., Studies of reaction parameters on synthesis of Citronellyl laurate ester via immobilized Candida rugosa lipase in organic media (2006) Bioprocess Biosyst Eng, 29, pp. 253-260. , 10.1007/s00449-006-0074-

    Aspergillus Sp. Lipase: Potential Biocatalyst For Industrial Use

    No full text
    The lipases obtained from the genus Aspergillus present remarkable importance in biotechnological applications, and numerous studies have reported the importance of the fermentation parameters, such as nutrients, temperature and fermentation time. Moreover, many Aspergillus spp. lipases present several properties of immense industrial importance, such as their pH and temperature stability and excellent enantioselectivity. Different strategies have been used in order to immobilize crude or purified Aspergillus spp. lipases. Hence, Aspergillus spp. lipases have been studied for different industrial applications such as in the food and detergent industries, and also in the kinetic resolution of pharmaceuticals and chiral intermediates. This review highlights the production, purification, characterization, applications and immobilization of lipases from Aspergillus spp. © 2010 Elsevier B.V. All rights reserved.673-4163171Schmidt, R.D., Verger, R., (1998) Angew. Chem. Int. Ed. Engl., 37, pp. 1608-1633Carvalho, P.O., Contesini, F.J., Ikegaki, M., (2006) Braz. J. Microbiol., 37, pp. 329-337Saxena, R.K., Davidson, W.S., Sheron, A., Giri, B., (2003) Process Biochem., 39, pp. 239-247Jaeger, K.E., Eggert, T., (2002) Curr. Opin. Biotechnol., 13, pp. 390-397MacEdo, G.A., Lozano, M.M.S., Pastore, G.M., (2003) Electron. J. Biotechnol., 6, pp. 72-75Liu, R., Jiang, X., Mou, H., Guan, H., Wang, H., Li, X., (2009) Biochem. Eng. J., 46, pp. 265-270Wang, P.-Y., Chen, Y.-J., Wu, A.-C., Lin, Y.-S., Kao, M.-F., Chen, J.-R., Ciou, J.-F., Tsai, S.-W., (2009) Adv. Synth. Catal., 351, pp. 2333-2341Gangadhara, Ramesh Kumar, P., Prakash, V., (2009) J. Am. Oil Chem. Soc., 86, pp. 773-781Shan, T., Wu, T., Reng, Y., Wang, Y., (2009) Anim. Genet., 40, pp. 863-870Paques, F.W., Pio, T.F., Carvalho, P.O., MacEdo, G.A., (2008) Braz. J. Food Technol., 11, pp. 20-27Paques, F.W., MacEdo, G.A., (2006) Quim. Nova, 29, pp. 93-99Melo, L.L.M., Pastore, G.M., MacEdo, G.A., (2005) Process Biochem., 40, pp. 3181-3185Melo, L.L.M., Pastore, G.M., MacEdo, G.A., (2005) Food Sci. Biotechnol., 14, pp. 368-370Carvalho, P.O., Contesini, F.J., Bizaco, R., MacEdo, G.A., (2005) Food Biotechnol., 19, pp. 183-192Carvalho, P.O., Calafatti, S.A., Marassi, M., Silva, D.M., Contesini, F.J., Bizaco, R., MacEdo, G.A., (2005) Quim. Nova, 28, pp. 614-616Hita, H., Robles, A., Camacho, B., González, P.A., Esteban, L., Jiménez, M.J., Muñío, M.M., Molina, E., (2009) Biochem. J. Eng., 46, pp. 257-264Reetz, M.T., Jaeger, K.-E., (2002) Directed Molecular Evolution of Proteins, pp. 245-279Timberlake, W.E., Marshall, M.A., (1989) Science, 244, pp. 1313-1317De Vries, R.P., (2003) Appl. Microbiol. Biotechnol., 61, pp. 10-20Contesini, F.J., Silva, V.C.F., MacIel, R.F., Lima, R.J., Barros, F.F.C., Oliveira, P.O., (2009) J. Microbiol., 47, pp. 563-571Filer, K., (2001) Feed Mix., 9, pp. 27-29Pandey, A., Soccol, C.R., Rodriguez-Leon, J.A., Nigam, P., (2001) Asiatech, 11, p. 221Hölker, U., Höfer, M., Lenz, J., (2004) Appl. Microbiol. Biotechnol., 64, pp. 175-186Lonsane, B.K., Ghildyal, N.P., Budaitman, S., Ramakrishna, S.V., (1985) Enzyme Microb. Technol., 7, pp. 258-265Satyanarayana, T., (1994) Solid State FermentationNahara, H., Koyama, Y., Yoshida, T., Pichangkura, S., Ueda, R., Taguchi, H., (1982) J. Ferment. Technol., 60, pp. 311-319Elibol, M., Ozer, D., (2001) Process Biochem., 36, pp. 325-329Burkert, J.F.M., Maugeri, F., Rodrigues, M.I., (2004) Bioresour. Technol., 91, pp. 77-84Adham, N.Z., Ahmed, E.M., (2009) Indian J. Microbiol., 49, pp. 77-83Kaushik, R., Saran, S., Isar, J., Saxena, R.K., (2006) J. Mol. Catal. B: Enzym., 40, pp. 121-126Sarat Babu, J., Sita Kumari, K., Sridevi, V.V., Rao, M.N., (2005) Biosci. Biotechnol. Res. Asia, 3, pp. 203-208Yadav, R.P., Saxena, R.K., Gupta, R., Davidson, S., (1997) J. Sci. Ind. Res., 56, pp. 479-482Ohnishi, K., Yoshida, Y., Sekiguchi, J., (1994) J. Ferment. Bioeng., 77, pp. 490-495Harish, C., Batish, V.K., Sannabhadti, S.S., Srinivasan, R.A., (1980) J. Food Sci., 45, pp. 598-600Fernández-Lorente, G., Ortiz, C., Segura, R.L., Fernández- Lafuente, R., Guisán, J.M., Palomo, J.M., (2005) Biotechnol. Bioeng., 92, pp. 773-779Höfelmann, M., Hartmann, J., Zink, A., Schreier, P., (1985) J. Food Sci., 50, pp. 1721-1725Pokorny, D., Cimerman, A., Steiner, W., (1997) J. Mol. Catal. B: Enzym., 2, pp. 215-222Pandey, A., (1992) Process Biochem., 27, pp. 109-116Mahadik, N.D., Puntambekar, U.S., Batawde, K.B., Khire, J.M., Gokhale, D.V., (2002) Process Biochem., 38, pp. 715-721MacRis, J.B., Kourentzi, E., Hatzinikolaou, D.G., (1996) Process Biochem., 31, pp. 807-812Taipa, M.A., Aires-Barros, M.R., Cabral, J.M.S., (1992) J. Biotechnol., 26, pp. 111-142Hasan, F., Shah, A.A., Hameed, A., (2009) Biotechnol. Adv., 27, pp. 782-798Weete, J.D., (1998) Food Sci. Technol., 88, pp. 641-664Aloulou, A.J., Rodriguez, A., Puccinelli, D., Mouz, N., Leclaire, J., Leblond, Y., Carriere, F., (2007) Biochim. Biophys. Acta, 1771, pp. 228-237Ota, Y., Sawamoto, T., Hasuo, M., (2000) Biosci. Biotechnol. Biochem., 64, pp. 2497-2499Mhetras, N.C., Bastawde, K.B., Gokhale, D.V., (2009) Bioresour. Technol., 100, pp. 1486-1490Sugihara, A., Shimada, Y., Nakamura, M., Nagao, T., Tominaga, Y., (1994) Protein Eng., 7, pp. 585-588Coca, J., Hernández, O., Berrio, R., Martínez, S., Díaz, E., Dustet, J.C., (2002) Biotechnol. Appl., 18, pp. 216-220Hiol, A., Jonzo, M.D., Druet, D., Comeau, L., (1999) Enzyme Microb. Technol., 25, pp. 80-87Mayordomo, I., Randez-Gil, F., Prieto, J.A., (2000) J. Agric. Food Chem., 48, pp. 105-109Shu, Z.Y., Yang, J.K., Yan, Y.J., (2007) Chin. J. Biotechnol., 23, pp. 96-101Yadav, R.P., Saxena, R.K., Gupta, R., Davidson, W.S., (1998) Biotechnol. Appl. Biochem., 28, pp. 243-249Van Heerden, E., Litthauer, D., Verger, R., (2002) Enzyme Microb. Technol., 30, pp. 902-909Namboodiri, V.M.H., Chattopadhyaya, R., (2000) Lipids, 35, pp. 495-502Singh, M., Singh, R.S., Banerjee, U.C., (2010) Process Biochem., 45, pp. 25-29Li, X., Wang, D., Xu, Y., Geng, Y., Chen, C., Wang, N., (2009) Chin. J. Catal., 30, pp. 951-957Okuma, K., Ono, A.M., Tsuchiya, S., Oba, M., Nishiyama, K., Kainosho, M., Terauchi, T., (2009) Tetrahedron Lett., 50, pp. 1482-1484Kazi, B., Kiss, L., Forró, E., Fülöp, F., (2010) Tetrahedron Lett., 51, pp. 82-85Hutt, A.J., Caldwell, J., (1984) Clin. Pharmacokinet., 9, pp. 371-373Carvalho, P.O., Contesini, F.J., Bizaco, R., Calafatti, S.A., MacEdo, G.A., (2006) J. Ind. Microbiol. Biotechnol., 33, pp. 713-718Zhou, Y., (2005) Curr. Nanosci., 1, pp. 35-42Contesini, F.J., Carvalho, P.O., (2006) Tetrahedron Asymmetry, 17, pp. 2069-2073Ismail, H., Lau, R.M., Langen, L.M., Rantwijk, F.V., Svedas, V.K., Sheldon, R.A., (2008) Green Chem., 10, pp. 415-418Pilissão, C., Carvalho, P.O., Nascimento, M.G., (2009) Process Biochem., 44, pp. 1352-1357Pilissão, C., Carvalho, P.O., Nascimento, M.G., (2010) J. Braz. Chem. Soc., 21, pp. 973-977Miyazawa, T., Kurita, S., Shimaoka, M., Ueji, S., Yamada, T., (1999) Chirality, 11, pp. 554-560Natraj, C.V., Gandhi, V.M., Menon, K.K.G., (1984) J. Biosci., pp. 37-46Baur, A., Harrer, T., Harrer, M., Jahn, G., Kalden, J.R., Fleckenstein, B., (1991) J. Mol. Med., 69, pp. 722-724Bingham, P.M., Zachars, Z., (2000) Lipoic Acid Derivatives and Their Use in Treatment of Disease, , International Patent WO/2000/024734Yan, H., Wang, Z., Chen, L., (2009) J. Ind. Microbiol. Biotechnol., 36, pp. 643-648Langrand, G., Rondot, N., Triantaphylides, D., Baratti, J., (1990) Biotechnol. Lett., 12, pp. 581-586Iwai, M., Okumura, S., Tsujisaka, Y., (1980) Agric. Biol. Chem., 44, pp. 2731-2732Song, X., Qi, X., Hao, B., Qu, Y., (2008) Eur. J. Lipid. Sci. Technol., 110, pp. 1095-1101Osborn, H.-T., Akoh, C.C., (2002) Compr. Rev. Food Sci. Food Safety, 3, pp. 93-103Tsuzuki, W., (2005) Biosci. Biotechnol. Biochem., 69, pp. 1256-1261Klemann, L.P., Aji, K., Chrysam, M., D'Amelia, R.P., Henderson, J.M., Huang, A.S., Otterburn, M.S., Roden, A., (1994) J. Agric. Food Chem., 42, pp. 442-446Carvalho, P.O., Campos, P.R.B., Noffs, M.D., Bastos, D.H.M., Oliveira, J.G., (2002) Acta Farma Bonaer., 21, p. 85Carvalho, P.O., Campos, P.R.B., Noffs, M.D.A., Fregolente, P.B.L., Fregolente, L.V., (2009) J. Braz. Chem. Soc., 20, pp. 117-124Wanasundara, U.N., Shahidi, F., (1998) J. Am. Oil Chem. Soc., 75, pp. 945-951Okada, T., Morrissey, M.T., (2007) Food Chem., 103, pp. 146-150Kumar, C.G., Malik, R.K., Tiwari, M.P., (1998) Curr. Sci., 75, pp. 1312-1318Saisubramanian, N., Edwinoliver, N.G., Nandakumar, N., Kamini, N.R., Puvanakrishnan, R., (2006) J. Ind. Microbiol. Biotechnol., 33, pp. 669-676Saad, R.R., (1995) Folia Microbiol., 40, pp. 263-266Kamini, N.R., Mala, J.G.S., Puvanakrishnan, R., (1998) Process Biochem., 33, pp. 505-511Wan, X., Lu, D., Jönsson, L.J., Hong, F., (2008) Eng. Life Sci., 8, pp. 268-276Cammarota, M.C., Freire, D.M.G., (2006) Bioresour. Technol., 97, pp. 2195-2210Roux-Van Der Merwe, M.P., Badenhorst, T., Britz, J., (2005) World J. Microbiol. Biotechnol., 21, pp. 947-953Silva, V.C.F., Contesini, F.J., Carvalho, P.O., (2009) J. Ind. Microbiol., 36, pp. 949-954Ivanov, A.E., Schneider, M.P., (1997) J. Mol. Catal. B: Enzym., 3, pp. 303-309Persson, M., Mladenoska, I., Wehtje, E., Adlercreutz, P., (2002) Enzyme Microb. Technol., 31, pp. 833-841Khare, S.K., Nakajima, M., (2000) Food Chem., 68, pp. 153-157Silva, V.C.F., Contesini, F.J., Carvalho, P.O., (2008) J. Braz. Chem. Soc., 19, pp. 1468-1474Grochulski, P., Li, Y., Schragm, J.D., Boutthilier, F., Smith, P., Harrinson, D., Rubin, B., Cyler, M., (1993) J. Biol. Chem., 268, pp. 12843-12847Gandhi, N.N., Sawant, S.B., Joshi, J.B., (1995) Biotechnol. Bioeng., 46, pp. 1-12Malcata, F.X., Garcia, H.S., Hill, Jr.C.G., Amundson, C.H., (1992) Biotechnol. Bioeng., 39, pp. 647-657Migneault, Dartiguenave, C., Bertrand, M.J., Waldron, K.C., (2004) Biotechniques, 37, pp. 790-802Schnapp, J., Shalitin, Y., (1976) Biochem. Biophys. Res. Commun., 70, pp. 8-14Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R., (2007) Enzyme Microb. Technol., 40, pp. 1451-1463Rodrigues, D.S., Mendes, A.A., Filice, M., Fernandez-Lafuente, R., Guisan, J.M., Palomo, J.M., (2009) J. Mol. Catal. B: Enzym., 58, pp. 36-40Mendes, A.A., Rodrigues, D.S., Filice, M., Fernandez-Lafuente, R., Guisan, J.M., Palomo, J.M., (2008) J. Mol. Catal. B: Enzym., 64, pp. 10721-10727Chatterjee, S., Barbora, L., Cameotra, S.S., Mahanta, P., Goswami, P., (2009) Appl. Biochem. Biotechnol., 157, pp. 593-600López-Serrano, P., Cao, L., Van Rantwijk, F., Sheldon, R.A., (2002) Biotechnol. Lett., 24, pp. 1379-1383Dhand, C., Solanki, P.R., Sood, K.N., Datta, M., Malhotra, B.D., (2009) Electrochem. Commun., 11, pp. 1482-1486Reetz, M.T., Zonta, A., Simpelkamp, J., (1996) Biotechnol. Bioeng., 49, pp. 527-534Dalla-Vecchia, R., Sebrão, D., Nascimento, M.G., Soldi, V., (2005) Process Biochem., 40, pp. 2677-2682Habulin, M., Primozic, M., Knez, Z., (2005) Ind. Eng. Chem. Res., 44, pp. 9619-9625Romero, C.M., Baigori, M.D., Pera, L.M., (2007) Appl. Microbiol. Biotechnol., 76, pp. 861-866Ellaiah, P., Prabhakar, T., Ramakrishna, B., Taleb, A.T., Adinarayana, K., (2004) Process Biochem., 39, pp. 525-528Damaso, M.C.T., Passianoto, M.A., Freitas, S.C., Freire, D.M.G., Lago, R.C.A., Couri, S., (2008) Braz. J. Microbiol., 39, pp. 676-681Adinarayana, K., Raju, K.V.V.S.N.B., Zargar, M.I., Devi, R.B., Lakshmi, P.J., Ellaiah, P., (2004) Indian J. Biotechnol., 3, pp. 65-69Palma, M.B., Pinto, A.L., Gombert, A.K., Seitz, K.H., Kivatinitz, S.C., Castilho, L.R., Freire, D.M.G., (2000) Appl. Biochem. Biotechnol., 8486, pp. 1137-1145Vargas, G.D.L.P., Treichel, H., Oliveira, D., Beneti, S.C., Freire, D.M.G., Luccio, M.D., (2008) J. Chem. Technol. Biotechnol., 83, pp. 47-54Cordova, J., Nemmaoui, M., Ismaïli-Alaoui, M., Morin, A., Roussos, S., Raimbault, M., Benjilali, B., (1998) J. Mol. Catal. B: Enzym., 5, pp. 75-78Alkan, H., Baysal, Z., Uyar, F., Dogru, M., (2007) Process Biochem., 136, pp. 183-192Benjamin, S., Pandey, A., (1997) Acta Biotechnol., 17, pp. 241-251Rathi, P., Saxena, R.K., Gupta, R., (2001) Process Biochem., 37, pp. 187-192Buisman, G.J.H., Van-Heltersen, C.T.W., Kramer, G.F.H., Veldsnik, J.W., Derksen, J.T.P., Cuperus, F.P., (1998) Biotechnol. Lett., 20, pp. 131-136MacEdo, G.A., Pastore, G.M., Rodrigues, M.I., (2004) Process Biochem., 39, pp. 687-692Chang, C.-S., Hsu, C.-S., (2005) J. Chem. Technol. Biotechnol., 80, pp. 537-544Shibatani, T., Omori, K., Akatsuka, H., Kawai, E., Matsumae, H., (2000) J. Mol. Catal. B: Enzym., 10, pp. 141-149Noureddini, H., Gao, X., Philkana, R.S., (2005) Bioresour. Technol., 96, pp. 769-777Nelson, L.A., Foglia, T.A., Marmer, W.N., (1996) J. Am. Oil Chem. Soc., 73, pp. 1191-119

    Food Supplementation With Vegetable Oils Rich In Oleic Acid: Health-promoting Effects And Application Viability

    No full text
    The role of food in human health is broad due to its diverse functions. Many foodsmay be explored in different aspects, since they are not only important for basic nutrition,but also show interesting functional properties. Unsaturated oils are commonly used infood supplementation, taking into account that they are sources of fatty acids, such asoleic acid. The regular consumption of these foods is associated with healthy effects onthe human body, including reduction of coronary heart disease risk and beneficial effectson blood lipids, including reduction of total and LDL-cholesterol, triglycerides andincrease of HDL-cholesterol in blood. The substitution of saturated for unsaturated fattyacids, as well as the supplementation with vegetable oils rich in oleic acid have been usedin food technology as a strategy of food production, with improvement in functional andsensory characteristics. Milk is an example of these substitutions, widely applied in thefood industry. Various research studies have shown that the consumption of milkenriched with oleic acid promoted a myriad of positive effects in healthy volunteers,subjects with increased risk factors and cardiovascular patients. The effects ofsupplementation with oleic acid in different types of salami and other products of animalorigin have also been reported. Wheat breads supplemented with oleic-rich sunflowerseed were produced without any significant adverse effects regarding the crust color,crumb grain structure and uniformity. Oleic acid has also been used in edible coatingssuch as plasticizer and emulsifier, for example, to preserve the quality of cold-stored strawberries, carrots and other fresh products. They improve sample appearance andconfer significant property barriers. These are important sensory and technologicalcharacteristics that justify the process viability, besides the addition of high nutritionalvalue. Therefore, food supplementation with vegetable oils rich in oleic acid can be veryinteresting, and different studies about this topic are going to be reviewed in thismanuscript. © 2013 Nova Science Publishers, Inc. All rights reserved.155164Chopra, J.G., (1974) AJPH, 64, p. 19Baro, L., Fonollá, J., Peña, J.L., Martínez-Férez, A., Lucena, A., Jiménez, J., Bozaand, J.J., López-Huertas, E., (2003) Clin. Nutr., 22, p. 175Carrero, J.J., Baró, L., Fonollá, J., González-Santiago, M., Martínez-Férez, A., Castillo, R., Jiménez, J., López-Huertas, E., (2004) Appl. Nutr. Invest., 20, p. 521Benito, P., Caballero, J., Moreno, Gutiérrez-Alcántara, J.C., Muñoz, C., Rojo, G., Garcia, S., Soriguer, F.C., (2006) Clin. Nutr, 25, p. 581Škrbić, B., Filipčev, B., (2008) Food Chem., 108, p. 119Nestel, P., Noakes, M., Belling, B., McArthur, R., Clifton, P., Janus, E., Abbey, M., (1992) J. Lipid Res., 33, p. 1029D'Imperio, M., Dugo, G.G., Alfa, M., Mannina, L.L., Segre, A.L., (2007) Food Chem., 102, p. 956Liu, Q., Singh, S., Green, A., (2002) J. Am. Coll. Nutr., 2, pp. 205SWarner, K., Knowlton, S., (1997) JAMA, J. Am. Med. Assoc., 74, p. 1317Gerde, J., Hardy, C., Fehr, W., White, P.J., (2007) JAMA J. Am. Oil. Chem. Soc., 84, p. 557Mensink, R.P., Katan, M.B., (1990) New Engl. J. Med., 323, p. 439Mozaffarian, D., Katan, M.B., Ascherio, A., Stampfer, M.J., Willett, W.C., (2006) N. Engl. J. Med., 354, p. 1601Warner, K., Gupta, M., (2005) J. Food Sci., 70, p. 395Okeefe, S.F., Wiley, V.A., Knauft, D.A., (1993) J. Am. Oil. Chem. Soc., 70, p. 489Bolton, G.E., Sanders, T.H., (2002) J. Am. Oil Chem. Soc., 79, p. 129Mendes, M.J., Santos, O.A.A., Jorda E.̃o, Silva, A.M., (2001) Appl. Catal. A-General, 217, p. 253Farra, W.E., Listb, G.R., Hydrogenation Tecniques (2004) Nutritionally Enhanced Edible Oil Processing, p. 320. , N. T. Dunford and H. B. Dunford, Routledge, USA, ppCepeda, E.A., Calvo, B., (2008) J. Food Eng., 89, p. 370Veldsink, J.W., Muuse, B.G., Meijer, M.M.T., Cuperus, F.P., van de Sande, R.L.K.M., van Putte, K.P.A.M., (1999) Fett/Lipid, 7, p. 244Brat, J., Pokorny J.́, (2000) J. Food Compos. Anal, 13, p. 337. , (2000)Walter, A., Rule, T., (1987), European Patent No. 0,129,990, Sept. 9Gil, A., (1992), European Patent No. 0,484,266, May 6Kuchan, M.A., Masor, M.L., Ponder, D.L., Halter, R.J., Benson, J.D., Katz, G.E., (2000), United States Patent No. 6,136,858, Oct. 24Quinlan, P.T., Chandler, I.C., (1992), European Patent No. 0,496,456, Jul. 29Lopez-Huertas, E., (2010) Pharmacol. Res, 61, p. 200Romeo, J., Warnberg, J., García-Mármol, E., Rodríguez-Rodríguez, M., Diaz, L.E., Gomez-Martínez, S., Cueto, B., Marcos, A., (2011) Nutr. Metab. & Cardiovasc. Dis., 21, p. 113Bourtoom, T., (2008) Int. Food Res. J., 15, p. 237Rhim, J.W., Wu, Y., Weller, C.L., Schnepf, M., (1999) J. Food Sci., 64, p. 149Fabra, M.J., Talens, P., Chiralt, A., (2008) J. Food Eng., 85, p. 393Morillon, V., Debeaufort, F., Blond, G., Capelle, M., Voilley, A., (2002) Crit. Rev. Food Sci. Nutr., 42, p. 6

    Potential Applications Of Carbohydrases Immobilization In The Food Industry

    No full text
    Carbohydrases find a wide application in industrial processes and products, mainly in the food industry. With these enzymes, it is possible to obtain different types of sugar syrups (viz. glucose, fructose and inverted sugar syrups), prebiotics (viz. galactooligossacharides and fructooligossacharides) and isomaltulose, which is an interesting sweetener substitute for sucrose to improve the sensory properties of juices and wines and to reduce lactose in milk. The most important carbohydrases to accomplish these goals are of microbial origin and include amylases (α-amylases and glucoamylases), invertases, inulinases, galactosidases, glucosidases, fructosyltransferases, pectinases and glucosyltransferases. Yet, for all these processes to be cost-effective for industrial application, a very efficient, simple and cheap immobilization technique is required. Immobilization techniques can involve adsorption, entrapment or covalent bonding of the enzyme into an insoluble support, or carrier-free methods, usually based on the formation of cross-linked enzyme aggregates (CLEAs). They include a broad variety of supports, such as magnetic materials, gums, gels, synthetic polymers and ionic resins. All these techniques present advantages and disadvantages and several parameters must be considered. In this work, the most recent and important studies on the immobilization of carbohydrases with potential application in the food industry are reviewed. © 2013 by the authors; licensee MDPI, Basel, Switzerland.14113351369Simpson, B.K., Rui, X., Klomklao, S., Enzymes in Food Processing (2012) Food Biochemistry and Food Processing, pp. 181-206. , In 2nd ed.Simpson, B.K., Ed.Wiley-Blackwell: Oxford, UKJana, M., Maity, C., Samanta, S., Pati, B.R., Islam, S.S., Mohapatra, P.K.D., Mondal, K.C., Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: An efficacy testing for preparation of maltooligosaccharides (2013) Ind. Crop. Prod., 41, pp. 386-391Akgöl, S., Kaçar, Y., Denizli, A., Arica, M.Y., Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres (2001) Food Chem., 74, pp. 281-288Nakamura, T., Ogata, Y., Shitara, A., Nakamura, A., Ohta, K., Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817 (1995) J. Ferm. Bioeng., 80, pp. 164-169Vasiljevic, T., Jelen, P., Production of β-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria (2001) Innov. Food Sci. Emerg., 2, pp. 75-85Vera, C., Guerrero, C., Conejeros, R., Illanes, A., Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose (2012) Enzyme Microb. Technol., 50, pp. 188-194Krisch, J., Bencsik, O., Papp, T., Vágvölgyi, C., Takó, M., Characterization of a β-glucosidase with transgalactosylation capacity from the zygomycete (2012) Rhizomucor miehei. Bioresour. Technol., 114, pp. 555-560Kawaguti, H.Y., Sato, H.H., Palatinose production by free and Ca-alginate gel immobilized cells of Erwinia sp (2007) Biochem. Eng. J., 36, pp. 202-208Tufvesson, P., Lima-Ramos, J., Nordblad, M., Woodley, J.M., Guidelines and cost analysis for catalyst production in biocatalytic processes (2010) Org. Process Res. Dev., 15, pp. 266-274Dodge, T., Production of Industrial Enzymes (2009) Enzymes in Food Technology, pp. 44-58. , In 2nd ed.Amauri, A.B., Ed.Wiley-Blackwell: Hoboken, NJ, USAWen, F., McLachlan, M., Zhao, H., Directed Evolution: Novel and Improved Enzymes (2008) Wiley Encyclopedia of Chemical Biology, pp. 1-10. , In John Wiley & Sons, Inc.: Hoboken, NJ, USAMartins, D.A.B., Prado, H.F.A., Leite, R.S.R., Ferreira, H., Moretti, M.M.S., Silva, R., Gomes, E., Agroindustrial wastes as substrates for microbial enzymes production and source of sugar for bioethanol production (2011) Integrated Waste Management, 2, pp. 319-361. , Kumar, S., Ed.In Tech: Rijeka, CroatiaHanefeld, U., Gardossi, L., Magner, E., Understanding enzyme immobilisation (2009) Chem. Soc. Rev., 38, pp. 453-468Torres-Salas, P., del Monte-Martinez, A., Cutiño-Avila, B., Rodriguez-Colinas, B., Alcalde, M., Ballesteros, A.O., Plou, F.J., Immobilized biocatalysts: Novel approaches and tools for binding enzymes to supports (2011) Adv. Mater., 23, pp. 5275-5282Kahraman, M.V., Bayramoǧlu, G., Kayaman-Apohan, N., Güngör, A., α-Amylase immobilization on functionalized glass beads by covalent attachment (2007) Food Chem., 104, pp. 1385-1392Silva, R.N., Asquieri, E.R., Fernandes, K.F., Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer (2005) Process Biochem., 40, pp. 1155-1159Zhang, L., Zhu, X., Zheng, S., Sun, H., Photochemical preparation of magnetic chitosan beads for immobilization of pullulanase (2009) Biochem. Eng. J., 46, pp. 83-87Guiraud, J., Demeulle, S., Galzy, P., Inulin hydrolysis by the Debaryomyces phaffii inulinase immobilized on DEAE cellulose (1981) Biotechnol. Lett., 3, pp. 683-688Tanriseven, A., Doǧan, S., Immobilization of invertase within calcium alginate gel capsules (2001) Process Biochem., 36, pp. 1081-1083Neri, D.F.M., Balcão, V.M., Cunha, M.G.C., Carvalho Jr., L.B., Teixeira, J.A., Immobilization of β-galactosidase from Kluyveromyces lactis onto a polysiloxane-polyvinyl alcohol magnetic (mPOS-PVA) composite for lactose hydrolysis (2008) Catal. Commun., 9, pp. 2334-2339González-Pombo, P., Fariña, L., Carrau, F., Batista-Viera, F., Brena, B.M., A novel extracellular β-glucosidase from Issatchenkia terricola: Isolation, immobilization and application for aroma enhancement of white Muscat wine (2011) Process Biochem., 46, pp. 385-389Li, T., Wang, N., Li, S., Zhao, Q., Guo, M., Zhang, C., Optimization of covalent immobilization of pectinase on sodium alginate support (2007) Biotechnol. Lett., 29, pp. 1413-1416Tanriseven, A., Aslan, Y., Immobilization of Pectinex Ultra SP-L to produce fructooligosaccharides (2005) Enzyme Microb. Technol., 36, pp. 550-554Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R., Improvement of enzyme activity, stability and selectivity via immobilization techniques (2007) Enzyme Microb. Technol., 40, pp. 1451-1463Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., Rodrigues, R.C., Potential of different enzyme immobilization strategies to improve enzyme performance (2011) Adv. Synth. Catal., 353, pp. 2885-2904Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernandez-Lafuente, R., Modifying enzyme activity and selectivity by immobilization (2013) Chem. Soc. Rev., , doi:10.1039/C2CS35231AIyer, P.V., Ananthanarayan, L., Enzyme stability and stabilization-Aqueous and non-aqueous environment (2008) Process Biochem., 43, pp. 1019-1032Bes, M.T., Carlos-Moreno, C., Guisan, J.M., Fernandez-Lafuente, R., Gomez-Moreno, C., Selective oxidation: Stabilisation by multipoint attachment of ferredoxin NADP+ reductase, an interesting cofactor recycling enzyme (1995) J. Mol. Catal. A Chem., 98, pp. 161-169Sheldon, R.A., Enzyme immobilization: The quest for optimum performance (2007) Adv. Synth. Catal., 349, pp. 1289-1307Singh, A.K., Flounders, A.W., Volponi, J.V., Ashley, C.S., Wally, K., Schoeniger, J.S., Development of sensors for direct detection of organophosphates Part I immobilization characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports (1999) Biosens. Bioelectron., 14, pp. 703-713Takahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., Inagaki, S., Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica (2000) Chem. Mater., 12, pp. 3301-3305Hsu, A.-F., Foglia, T.A., Shen, S., Immobilization of Pseudomonas cepacia lipase in a phyllosilicate sol-gel matrix: Effectiveness as a biocatalyst (2000) Biotechnol. Appl. Biochem., 31, pp. 179-183Betancor, L., Fuentes, M., Dellamora-Ortiz, G., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, C., Fernández-Lafuente, R., Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles (2005) J. Mol. Catal. B Enzym., 32, pp. 97-101Brady, D., Jordaan, J., Advances in enzyme immobilisation (2009) Biotechnol. Lett., 31, pp. 1639-1650Fernandez-Lafuente, R., Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation (2009) Enzyme Microb. Technol., 45, pp. 405-418Dib, I., Nidetzky, B., The stabilizing effects of immobilization in D-amino acid oxidase from (2008) Trigonopsis variabilis. BMC Biotechnol., 8, pp. 1-11Bolivar, J.M., Mateo, C., Grazu, V., Carrascosa, A.V., Pessela, B.C., Guisan, J.M., Heterofunctional supports for the one-step purification, immobilization and stabilization of large multimeric enzymes: Amino-glyoxyl versus amino-epoxy supports (2010) Process Biochem., 45, pp. 1692-1698da Silva, V., Contesini, F., de Oliveira Carvalho, P., Enantioselective behavior of lipases from Aspergillus niger immobilized in different supports (2009) J. Ind. Microbiol. Biotechnol., 36, pp. 949-954Gómez de Segura, A., Alcalde, M., Plou, F.J., Remaud-simeon, M., Monsan, P., Ballesteros, A., Encapsulation in lentikats of dextransucrase from leuconostoc mesenteroides nrrl b-1299, and its effect on product selectivity (2003) Biocatal. Biotransform., 21, pp. 325-331Guidini, C.Z., Fischer, J., Resende, M.M., Cardoso, V.L., Ribeiro, E.J., β-Galactosidase of Aspergillus oryzae immobilized in an ion exchange resin combining the ionic-binding and crosslinking methods: Kinetics and stability during the hydrolysis of lactose (2011) J. Mol. Catal. B Enzym., 71, pp. 139-145Ray, R.R., Jana, S.C., Nanda, G., Biochemical approaches of increasing thermostability of β-amylase from Bacillus megaterium B6 (1994) FEBS Lett., 356, pp. 30-32Mateo, C., Fernández-Lorente, G., Abian, O., Fernández-Lafuente, R., Guisán, J.M., Multifunctional epoxy supports: A new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage (2000) Biomacromolecules, 1, pp. 739-745Mateo, C., Pessela, B.C., Grazu, V., López-Gallego, F., Torres, R., Fuentes, M., Hidalgo, A., Fernández-Lorente, G., (2006) Immobilization and stabilization of proteins by multipoint covalent attachment on novel amino-epoxy-sepabeads®., 22, pp. 153-162Basso, A., Spizzo, P., Ferrario, V., Knapic, L., Savko, N., Braiuca, P., Ebert, C., Gardossi, L., Endo-and exo-inulinases: Enzyme-substrate interaction and rational immobilization (2010) Biotechnol. Prog., 26, pp. 397-405Bolivar, J.M., Nidetzky, B., Positively charged mini-protein zbasic2 as a highly efficient silica binding module: Opportunities for enzyme immobilization on unmodified silica supports (2012) Langmuir, 28, pp. 10040-10049Gopinath, S., Sugunan, S., Leaching studies over immobilized a-amylase. importance of the nature of enzyme attachment (2004) React. Kinet. Catal. Lett., 83, pp. 79-83Ivanov, A.E., Schneider, M.P., Methods for the immobilization of lipases and their use for ester synthesis (1997) J. Mol. Catal. B Enzym., 3, pp. 303-309Brena, B.M., Batista-Viera, F., Immobilization of Enzymes (2006) Methods in Biotechnology. Immobilization of Enzymes and Cells, pp. 15-30. , In Guisan, M.J., Ed.Humana Press Inc.: Totowa, NJ, USACao, L., Schmid, R.D., (2006) Carrier-bound Immobilized Enzymes: Principles, Application and Design., , Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, GermanyTorres, R., Mateo, C., Fernández-Lorente, G., Ortiz, C., Fuentes, M., Palomo, J.M., Guisan, J.M., Fernández-Lafuente, R., A novel heterofunctional epoxy-amino sepabeads for a new enzyme immobilization protocol: Immobilization-stabilization of β-galactosidase from (2003) Aspergillus oryzae. Biotechnol. Prog., 19, pp. 1056-1060Hannibal-Friedrich, O., Chun, M., Sernetz, M., Immobilization of beta-galactosidase, albumin, and gamma-globulin on epoxy-activated acrylic beads (1980) Biotechnol. Bioeng., 22, pp. 157-175Katchalski-Katzir, E., Kraemer, D.M., Eupergit® C, a carrier for immobilization of enzymes of industrial potential (2000) J. Mol. Catal. B Enzym., 10, pp. 157-176Mateo, C., Grazú, V., Pessela, B.C., Montes, T., Palomo, J.M., Torres, R., López-Gallego, F., Guisán, J.M., Advances in the design of new epoxy supports for enzyme immobilization-stabilization (2007) Biochem. Soc. Trans., 35, pp. 1593-1601Mateo, C., Abian, O., Fernández-Lorente, G., Pedroche, J., Fernández-Lafuente, R., Guisan, J.M., Tam, A., Daminati, M., Epoxy Sepabeads: A novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment (2002) Biotechnol. Prog., 18, pp. 629-634Grazú, V., Abian, O., Mateo, C., Batista-Viera, F., Fernández-Lafuente, R., Guisán, J.M., Novel bifunctional epoxy/thiol-reactive support to immobilize thiol containing proteins by the epoxy chemistry (2003) Biomacromolecules, 4, pp. 1495-1501Abian, O., Fernández-Lafuente, R., García, J.L., González García, R., Grazú, V., Guisán, J.M., Hermoso, J.A., Stabilization of penicillin G acylase from Escherichia coli: Site-directed mutagenesis of the protein surface to increase multipoint covalent attachment (2004) Appl. Environ. Microb., 70, pp. 1249-1251Bolivar, J.M., López-Gallego, F., Godoy, C., Rodrigues, D.S., Rodrigues, R.C., Batalla, P., Rocha-Martín, J., Guisán, J.M., The presence of thiolated compounds allows the immobilization of enzymes on glyoxyl agarose at mild pH values: New strategies of stabilization by multipoint covalent attachment (2009) Enzyme Microb. Technol., 45, pp. 477-483Godoy, C.A., Rivas, B., Grazú, V., Montes, T., Guisán, J.M., López-Gallego, F., Glyoxyl-disulfide agarose: A tailor-made support for site-directed rigidification of proteins (2011) Biomacromolecules, 12, pp. 1800-1809Hernandez, K., Fernandez-Lafuente, R., Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance (2011) Enzyme Microb. Technol., 48, pp. 107-122Bernardino, S., Estrela, N., Ochoa-Mendes, V., Fernandes, P., Fonseca, L., Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties (2011) J. Sol-Gel Sci. Technol., 58, pp. 545-556Pierre, A.C., The sol-gel encapsulation of enzymes (2004) Biocatal. Biotransform., 22, pp. 145-170Shah, S., Sharma, A., Gupta, M.N., Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder (2006) Anal. Biochem., 351, pp. 207-213Dong, T., Zhao, L., Huang, Y., Tan, X., Preparation of cross-linked aggregates of aminoacylase from Aspergillus melleus by using bovine serum albumin as an inert additive (2010) Bioresour. Technol., 101, pp. 6569-6571Cabana, H., Jones, J.P., Agathos, S.N., Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals (2007) J. Biotechnol., 132, pp. 23-31López-Gallego, F., Betancor, L., Hidalgo, A., Alonso, N., Fernández-Lafuente, R., Guisán, J.M., Co-aggregation of enzymes and polyethyleneimine: A simple method to prepare stable and immobilized derivatives of glutaryl acylase (2005) Biomacromolecules, 6, pp. 1839-1842Wilson, L., Illanes, A., Abián, O., Pessela, B.C.C., Fernández-Lafuente, R., Guisán, J.M., Co-aggregation of penicillin G acylase and polyionic polymers: An easy methodology to prepare enzyme biocatalysts stable in organic media (2004) Biomacromolecules, 5, pp. 852-857Wilson, L., Illanes, A., Abián, O., Fernández-Lafuente, R., Guisan, J.M., Encapsulation of very soft cross-linked enzyme aggregates (CLEAs) into very rigid LentiKats (2002) FAL Agric. Res., 241, pp. 121-125Wilson, L., Illanes, A., Pessela, B.C., Abian, O., Fernández-Lafuente, R., Guisán, J.M., Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media (2004) Biotechnol. Bioeng., 86, pp. 558-562Kim, J., Lee, J., Na, H.B., Kim, B.C., Youn, J.K., Kwak, J.H., Moon, K., Park, J., A Magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica (2005) Small, 1, pp. 1203-1207Hobbs, L., Sweeteners from Starch: Production, Properties and Uses (2009) Starch, pp. 797-832. , In 3rd ed.James, B., Roy, W., Eds.Academic Press: San Diego, CA, USARoy, I., Gupta, M.N., Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads (2004) Enzyme Microb. Technol., 34, pp. 26-32Al-Mayah, A.M.R., Simulation of enzyme catalysis in calcium alginate beads (2012) Enzyme Res., , doi:10.1155/2012/459190Ivanova, V., Dobreva, E., Legoy, M.D., Characteristics of immobilized thermostable amylases from two Bacillus licheniformis strains (1998) Acta Biotechnol., 18, pp. 339-351Shewale, S.D., Pandit, A.B., Hydrolysis of soluble starch using Bacillus licheniformis α-amylase immobilized on superporous CELBEADS (2007) Carbohydr. Res., 342, pp. 997-1008Singh, V., Kumar, P., Carboxymethyl tamarind gum-silica nanohybrids for effective immobilization of amylase (2011) J. Mol. Catal. B Enzym., 70, pp. 67-73Tüzmen, N., Kalburcu, T., Denizli, A., Α-amylase immobilization onto dye attached magnetic beads: Optimization and characterization (2012) J. Mol. Catal. B Enzym., 78, pp. 16-23Talekar, S., Chavare, S., Optimization of immobilization of α-amylase in alginate gel and its comparative biochemical studies with free α-amylase (2012) Rec. Res. Sci. Technol., 4, pp. 1-5Carpio, C., Escobar, F., Batista-Viera, F., Ruales, J., Bone-bound glucoamylase as a biocatalyst in bench-scale production of glucose syrups from liquefied cassava starch (2011) Food Bioprocess Tech., 4, pp. 566-577Zhao, G., Wang, J., Li, Y., Huang, H., Chen, X., Reversible immobilization of glucoamylase onto metal-ligand functionalized magnetic FeSBA-15 (2012) Biochem. Engin. J., 68, pp. 159-166Singh, R.S., Saini, G.K., Kennedy, J.F., Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system (2010) Carbohydr. Polym., 81, pp. 252-259Singh, R.S., Saini, G.K., Kennedy, J.F., Maltotriose syrup preparation from pullulan using pullulanase (2010) Carbohydr. Polym., 80, pp. 401-407Talekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S., Mulla, M., Ladole, M., Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase (2012) Bioresour. Technol., 123, pp. 542-547Emregul, E., Sungur, S., Akbulut, U., Polyacrylamide-gelatine carrier system used for invertase immobilization (2006) Food Chem., 97, pp. 591-597Kotwal, S.M., Shankar, V., Immobilized invertase (2009) Biotechnol. Adv., 27, pp. 311-322Cadena, P.G., Wiggers, F.N., Silva, R.A., Lima Filho, J.L., Pimentel, M.C.B., Kinetics and bioreactor studies of immobilized invertase on polyurethane rigid adhesive foam (2011) Bioresour. Technol., 102, pp. 513-518Smaali, I., Soussi, A., Bouallagui, H., Chaira, N., Hamdi, M., Marzouki, M.N., Production of high-fructose syrup from date by-products in a packed bed bioreactor using a novel thermostable invertase from (2011) Aspergillus awamori. Biocatal. Biotransform., 29, pp. 253-261Albertini, A.V.P., Cadena, P.G., Silva, J.L., Nascimento, G.A., Reis, A.L.S., Freire, V.N., Santos, R.P., Neto, P.J.R., Performance of invertase immobilized on glass-ceramic supports in batch bioreactor (2012) Chem. Eng. J., 187, pp. 341-350Albertini, A.V.P., Reis, A.L.S., Teles, F.R.R., Souza, J.C., Filho, J.L.R., Freire, V.N., Santos, R.P., Martins, D.B.G., The new flow system approach in packed bed reactor applicable for immobilized enzyme (2012) J. Mol. Catal. B Enzyme, 79, pp. 1-7Mirzarakhmetova, D., Dekhkonov, D., Rakhimov, M., Abdurazakova, S., Akhmedova, Z., The properties of invertase, covalently immobilized at activated carbon (2009) Appl. Biochem. Microbiol., 45, pp. 258-261Vujčić, Z., Milovanović, A., Božić, N., Dojnov, B., Vujčić, M., Andjelković, U., Lončar, N., Immobilization of cell wall invertase modified with glutaraldehyde for continuous production of invert sugar (2010) J. Agric. Food Chem., 58, pp. 11896-11900Mohd Zain, N.A., Mohd Suardi, S., Idris, A., Hydrolysis of liquid pineapple waste by invertase immobilized in PVA-alginate matrix (2010) Biochem. Eng. J., 50, pp. 83-89Talekar, S., Shah, V., Patil, S., Nimbalkar, M., Porous cross linked enzyme aggregates (p-CLEAs) of Saccharomyces cerevisiae invertase (2012) Catal. Sci. Technol., 2, pp. 1575-1579Cho, Y.J., Sinha, J., Park, J.P., Yun, J.W., Production of inulooligosaccharides from inulin by a dual endoinulinase system (2001) Enzyme Microb. Technol., 29, pp. 428-433Vandamme, E.J., Derycke, D.G., Microbial Inulinases: Fermentation Process, Properties, and Applications (1983) Advances in Applied Microbiology, 29, pp. 139-176. , In Allen, I.L., Ed.Academic Press: New York, NY, USARicca, E., Calabrò, V., Curcio, S., Iorio, G., The state of the art in the production of fructose from inulin enzymatic hydrolysis (2007) Crit. Rev. Biotechnol., 27, pp. 129-145Santa, G., Bernardino, S., Magalhães, S., Mendes, V., Marques, M., Fonseca, L., Fernandes, P., From inulin to fructose syrups using sol-gel immobilized inulinase (2011) Appl. Biochem. Biotechnol., 165, pp. 1-12Singh, R., Dhaliwal, R., Puri, M., Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1 (2007) J. Ind. Microbiol. Biotechnol., 34, pp. 649-655Singh, R., Dhaliwal, R., Puri, M., Development of a stable continuous flow immobilized enzyme reactor for the hydrolysis of inulin (2008) J. Ind. Microbiol. Biotechnol., 35, pp. 7

    Microbial Transformations Of Oleic Acid

    No full text
    Oleic acid is one of the most important vegetable oils fatty acids within differentindustrial fields. This monounsaturated fatty acid is extensively found in olive, corn, andsoybean oils, among others. Its importance varies from health-promoting properties, suchas the prevention of cardiovascular diseases and some types of cancer, to manytechnological applications, taking into account the oxidative stability of this oil. Oneimportant application of oleic acid is its use for obtaining different compounds throughmicrobial transformations and biocatalytic processes. These steps include hydration orepoxidation of the double bond, reduction of carboxylic acid and combinations of thesereactions. An important group that can be obtained through transformation of oleic acid isthe hydroxy fatty acids (HFA) and their derivatives. They are used in cosmetics, paintsand coatings, lubricants and in the food industry. Several microorganisms, which includebacterial and yeast strains, produce HFA from oleic acid, such as in the obtainment of (E)10-hydroxy-8-octadecenoic acid, using a Pseudomonas sp. 42A2 strain. 10-hydroxyoctadecanoic acid can be produced by Nocardia cholesterolicum, Rhodococcussp. and Saccharomyces cerevisiae. These compounds are examples of monohydroxyderivatives of oleic acid and have a diverse potential for application in the food industry,considering its similarity with ricinoleic acid. Added to the possibility ofbiotransformation of oleic acid using microbial cells, the use of isolated lipases for theproduction of other compounds from oleic acid and/or triacylglycerols containing oleicacid have been reported, as well as the production of structured lipids by acydolysis ofdifferent oil sources with free fatty acid mixtures. These reactions are catalyzed bymicrobial lipases from different microorganisms like Rhizomucor miehei, andThermomyces lanuginosus. Therefore, this review reports the use of free oleic acid and/or different oils containing oleic acid in their compositions for the obtaining of differentimportant compounds, with the use of microbial cells by biotransformation of oleic acid,or by biocatalytic reactions using isolated microbial lipases. © 2013 Nova Science Publishers, Inc. All rights reserved.7182Berdy, J., (2005) J. Antibiot., 58 (1)Bajpai, V.K., Kim, H.R., Hou, C.T., Kanget, S.C., (2009) J. Ind. Microbiol. Biotechnol, 36, p. 695Carballeira, N.M., (2008) Prog. Lipid Res, 47, p. 50Hou, C.T., Bagby, M.O., (1991) J. Ind. Microbiol, 7, p. 123Kim, H.R., (2001) Enzyme Microb. Technol, 25, p. 583Bagby, M.O., Calson, K.D., (1989) Fats for the future, , Ellis Horwood Limited Press, Chichester, UKBajpai, V., Shin, S.Y., Kim, M.J., Kim, H.R., Kang, S.C., (2004) Agric. Chem. Biotechnol, 47, p. 199Hou, C.T., Forman, R.J., (2000) J. Ind. Microbiol. Biotechnol, 24, p. 275Shin, S.Y., Kim, H.R., Kang, S.C., (2004) Agric. Chem. Biotechnol, 47, p. 205Kim, H., Gardner, H.W., Hou, C.T., (2000) J. Ind. Microbiol. Biotechnol, 25, p. 199Kuo, T.M., Manthey, L.K., Hou, C.T., (1998) J. Am. Chem. Soc, 75, p. 875Kuo, T.M., Kim, H., Hou, C.T., (2001) Curr. Microbiol, 43, p. 198Ye, R., Hayes, D.G., (2011) J. Am. Oil Chem. Soc, , Doi:10.1007/s11746-011-1919-4Chen, H.C., Kuo, C.H., Tsai, W.C., Chung, Y.L., Chiang, W.D., Chang, C.M., Liu, Y.C., Shieh, C.J., (2011) J. Am. Oil Chem, , Doi: 10.1007/s11746-011-1914-9Pan, X., Chen, B., Wang, J., Zhang, X., Zhul, B., Tan, T., (2011) Appl. Biochem. Biotechnol, , Doi: 10.1007/s12010-011-9324-xHou, C.T., (2006) Biocatalysis and Biotechnology for Functional Foods and Industrial Products, , CRC Press, New YorkBajpai, V.K., Kim, H.R., Hou, C.T., Kang, S.C., (2009) J. Ind. Microbiol. Biotechnol, 36, p. 695Hou, C.T., (2008) Asia Pac. J. Clin. Nutr, 17, p. 192Heo, S.H., Hou, C.T., Kim, B.S., (2009) New Biotechnol., 26, p. 105Kuo, T.M., Kaneshiro, T., Hou, C.T., (2002) Lipid Biotechnology, , Marcel Dekker, New YorkBae, J.H., Suh, M.J., Lee, N.Y., Hou, C.T., Kim, H.R., (2010) Biotechnol. Bioproc. Eng., 15, p. 953Kim, H., Gardner, H.W., Hou, C.T., (2000) J. Am. Oil Chem. Soc., 77, p. 95Bajpai, V., Shin, S.Y., Kim, M.J., Kim, H.R., Kang, S.C., (2004) Agric. Chem. Biotechnol, 47, p. 199Shin, S.Y., Kim, H.R., Kang, S.C., (2004) Agric. Chem. Biotechnol, 47, p. 205Yamada, Y., Uemura, H., Nakaya, H., Sakata, K., Takatori, T., Nagao, M., Iwase, H., Iwadate, K., (1996) Biochem. Biophys. Res. Commun, 226, p. 391Hou, C.T., Bagby, M.O., Plattner, R.D., Koritala, S., (1991) J. Am. Oil Chem. Soc, 68, p. 99Kuo, T.M., Kim, H., Hou, C.T., (2001) Curr. Microbiol, 43, p. 198Shin, S.Y., Bajpai, V.K., Kim, H.R., Kang, S.C., (2007) Int. J. Food Microbiol, 113, p. 233Chang, I.A., Kim, I.H., Kang, S.C., Hou, C.T., Kim, H.R., (2007) Appl. Microbiol. Biotechnol, 74, p. 301Hou, C.T., Bagby, M.O., (1992) J. Ind. Microbiol, 9, p. 103Kim, H., Gardner, H.W., Hou, C.T., (2000) J. Ind. Microbiol. Biotechnol, 25, p. 109Kuo, T.M., Manthey, L.K., Hou, C.T., (1998) J. Am. Oil Chem. Soc, 75, p. 875Kuo, T.M., Kim, H., Hou, C.T., (2001) Curr. Microbiol, 34, p. 198Kuo, T.M., Lanser, A.C., (2003) Curr. Microbiol, 47, p. 186Ellamar, J.B., Song, K.S., Kim, H.R., (2011) J. Agric. Food Chem, 59, p. 8175Kuo, T.M., Huang, J.K., Labeda, D., Wen, L., Knothe, G., (2008) Curr. Microbiol, 57, p. 437Wallen, L.L., Benedict, R.G., Jackson, R.W., (1962) Arch. Biochem. Biophys, 99, p. 249El-Sharkawy, S.H., Yang, W., Dostal, L., Rosazza, J.P., (1992) Appl. Environ. Microbiol, 58, p. 2116Hudson, J.A., MacKenzie, C.A.M., Joblin, K.N., (1995) Appl. Microbiol. Biotechnol, 44, p. 1Kaneshiro, T., Nakamura, L.K., Bagby, M.O., (1995) Curr. Microbiol, 31, p. 62Bevers, L.E., Pinkse, M.W.H., Verhaert, P.D.E.M., Hagen, W.R., (2009) J. Bacteriol, 191, p. 5010Latrasse, A., Paitier, S., Lachot, B., Bonnarme, P., Féron, G., Durand, A., (1997) Biotechnol. Lett, 19, p. 715Kim, B.N., Yeom, S.J., Oh, D.K., (2011) Biotechnol. Lett, 33, p. 993Seo, C.W., Yamada, Y., Takada, N., Okada, H., (1981) Agric. Biol. Chem, 45, p. 2025Lanser, A.C., (1993) J. Am. Oil Chem. Soc, 70, p. 543Hou, C.T., (1994) Appl. Environ. Microbiol, 60, p. 3760Koritala, S., Bagby, M.O., (1992) J. Am. Oil. Chem. Soc, 69, p. 575Kuo, T.M., Levinson, W.E., (2006) J. Am. Oil. Chem. Soc, 83, p. 671Kuo, T.M., Kaneshiro, T., Hou, C.T., Microbiological Conversions of Fatty Acids to Value-Added Products (2002) Lipid Biotechnology, pp. 605-628. , T. M. Kuo, and H. W. Gardner Editors, New YorkVilleneuve, P., Turon, F., Caro, Y., Escoffier, R., Baréa, B., Barouh, B., Lago, R., Pina, M., (2005) Enzyme Microb. Technol., 150, p. 37Esteban, L., Jiménez, M.J., Hita, E., González, P.A., Marti L.́n, Robles, A., (2011) Bioch. Eng. J., 54, p. 62Tecela C.̃o, Silva, J., Dubreucq, E., Ribeiro, M.H., Ferreira-Dias, S., (2010) J. Mol. Catal. B: Enzym., 65, p. 122Jackson, M.A., King, J.W., (1997) J. Am. Oil Chem. Soc., 74, p. 353Marchetti, J.M., Errazu, A.F., (2008) Fuel, 87, p. 3447Orellana-Coca, C., Billakanti, J.M., Mattiasson, B., Hatti-Kaul, R., (2007) J. Mol. Catal. B: Enzym., 44, p. 133Sun, S., Ke, X., Cui, L., Yang, G., Bi, Y., Song, F., Xu, X., (2011) Ind. Crops Prod., 33, p. 676Horchani, H., Chaâbouni, M., Gargouri, Y., Sayari, A., (2010) Carbohyd. Polym., 79, p. 466Akerman, C.O., Hagström, A.E.V., Mollaahmad, M.A., Karlsson, S., Hatti-Kaul, R., (2011) Proc. Biochem., , Doi: 10.1016/j.procbio. 2011. 08.00

    Potential Of Enantioselective Biocatalysis By Microbial Lipases [potencial De Biocatálise Enantiosseletiva De Lipases Microbianas]

    No full text
    Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum) were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase from Aspergillus niger showed the highest activity (18.2 U/mL) and was highly thermostable, retaining 90% and 60% activity at 50°C and 60°C after 1 hour, respectively. In organic medium, this lipase provided the best results in terms of enantiomeric excess of the (S)-active acid (ee = 6.1%) and conversion value (c = 20%) in the esterification of (R,S)-ibuprofen with 1-propanol in isooctane. The esterification reaction of the racemic mixture of (A,S)-2-octanol with decanoic acid proceeded with high enantioselectivity when lipase from Aspergillus niger (E = 13.2) and commercial lipase from Candida antarctica (E = 20) were employed.284614621Demirjian, D.C., Shah, P.C., Moris-Vas, F., (1999) Biocatalysis- From Discovery to Application, 200, p. 1Campos, P.R.B., Oliveira, B.F., Noffs, M.D.A., Carvalho, P.O., (2002) Lecta, 20, p. 7Carvalho, P.O., Campos, P.R.B., Noffs, M.D., Oliveira, J.G., Shimizu, M.T., Silva, D.M., (2003) Quim. Nova, 26, p. 75Carvalho, P.O., Pastore, G.M., (1998) Food Biotechnol., 12, p. 57Macedo, G.A., Pastore, G.M., (2004) Food Sci. Biotechnol., 13, p. 21Jaeger, K.E., Ransak, S., Koch, H.B., Ferrato, F., Dijkstra, B.W., (1994) FEMS Microbiol. Rev., 15, p. 29Vulfson, E.N., (1994) Lipases: Their Structure, Biochemistry and Application, , Wooley, P.Petersen, S. B., eds.Cambridge University Press: Great BritainIwal, M., Tsujisaka, Y., (1984) Fungal Lipase, , Brockman, H. L., ed.Elsevier: AmsterdamFaber, K., (2000) Biotransformation in Organic Chemistry4a Ed., , Springer-Verlag: BerlinMaier, N.M., Franco, P., Lindner, W., (2001) J. Chromatogr., A, 906, p. 3Caldwell, J., Hutt, A.J., Gigleux-Fournel, S., (1988) Biochem. Pharmacol., 37, p. 105Neupert, W., Brugger, R., Euchenhofer, C., Brune, K., Geisslinger, G.Br., (1997) J. Pharmacol., 122, p. 487Valentine, R., (2002) Tese de Doutorado, , University of Pittsburgh, AlemanhaBonneau, P.R., Martin, R., Lee, T., Sakowicz, R., Martichonok, V., Hogan, J.K., Gold, M., Jones, J.B., (1996) J. Braz. Chem. Soc., 7, p. 357Saxena, R.K., Ghosh, P.K., Gupta, R., Davidson, W.S., (1999) Curr. Sci., 77, p. 101Margolin, A.L., (1993) Enzyme Microb. Technol., 15, p. 266Tsai, S., Tsai, C., Chang, C., (1999) Appl. Biochem. Biotechnol., 80, p. 205Chamorro, S., Alcántara, A.R., De La Casa, R.M., Sinisterra, J.V., Sanchéz-Montero, J.M., (2001) J. Mol. Catal. B: Enzym., 11, p. 939Silva, D.M., (2004) Dissertação de Mestrado, , Universidade São Francisco, Bragança Paulista, BrasilArroyo, M., Moreno, J.M., Sinisterra, J.V., (1995) J. Mol. Catal. A: Chem., 97, p. 195Cardenas, F., Castro-Alvarez, M.S., Sanchez-Montera, J.M.S., Sanchez, A., Sinisterra, J.V., Valmaseda, M., Elson, S.W., Alvarez, E., (2001) Enzyme Microb. Technol., 28, p. 145Wehtje, E., Costes, D., Adlercreutz, P., (1997) J. Mol. Catal. B: Enzym., 3, p. 221Thomson, C.A., Delaquis, P.J., Mazza, G., (1999) Crit. Rev. Food Sci. Nutr., 39, p. 165Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J., (1951) J. Biol. Chem., 193, p. 265http:www-org.tu-graz.ac.atSilva, D.M., Carvalho, P.O., Oliveira, J.G., (2003) Resumos Do 2° Encontro de Pós-Graduação Stricto Sensu, , Itatiba, BrasilPokorny, D., Frederich, J., Cimerman, A., (1994) Biotechnol. Lett., 16, p. 363Mahadik, N.D., Puntambekar, U.S., Bastawde, K.B., Khire, J.M., Gokhale, D.V., (2002) Process Biochem., 38, p. 715Ionita, A., Moscovici, M., Popa, C., Vamanu, A., Popa, O., Dinu, I., (1997) J. Mol. Catal. B: Enzym., 3, p. 147Jensen, R.G., (1974) Lipids, 9, p. 149Macrae, A.R., Hammond, R.C., (1985) Biotechnol. Genetic Eng. Rev., 3, p. 193Sugihara, A., Shimada, Y., Nakamura, M., Nagao, T., Tominaga, Y., (1994) Protein Eng., 7, p. 585Macedo, G.A., Park, Y.K., Pastore, G.M., (1997) Rev. Microbiol., 28, p. 90Hedrich, H.C., Spener, F., Menge, U., Hecht, H.-J., Schmid, R.D., (1991) Enzyme Microb. Technol., 13, p. 840Rivera-Muñoz, G., Tinoco-Valencia, J.R., Sánchez, S., Farrés, A., (1991) Biotechnol. Lett., 13, p. 277Maliszewska, I., Mastalerz, P., (1992) Enzyme Microb. Technol., 14, p. 190Ibrik, A., Chahinian, H., Rugani, N., Sarda, L., Comeau, L.G., (1998) Lipids, 33, p. 377Sztajer, H., Lunsdorf, H., Erdmann, H., Menge, U., Schmid, R., (1992) Biochim. Biophys. Acta, 1124, p. 253Alhir, S., Markakis, P., Chadan, R.C., (1990) J. Agric. Food Chem., 38, p. 598Sant'anna Jr., G.L., Freire, D.M.G., Gomes, P.M., Bon, E.P.S., (1997) Rev. Microbiol., 28, p. 6Stöklein, W., Sztajer, H., Menge, U., Schmid, R.D., (1993) Biochim. Biophys. Acta, 1168, p. 181Ferrer, M., Plou, F.J., Nuero, O.M., Reyes, F., Ballesteros, A., (2000) J. Chem. Technol. Biotechnol., 75, p. 569Mase, T., Matsumiya, Y., Matsuura, A., (1995) Biosci. Biotechnol. Biochem., 59, p. 329Isobe, K., Nokihara, K., Yamagushi, S., Mase, T., Schmid, R.D., (1992) Eur. J. Biochem., 203, p. 233Sugihara, A., Shimada, Y., Takada, N., Nagao, T., Tominaga, T., (1996) J. Ferment Bioeng., 82, p. 498Yadav, R.P., Saxena, R.K., Gupta, R., Davidson, S., (1998) Folia Microbiol., 43, p. 373Freire, D.M.G., Teles, E.M.F., Bon, E.P.S., Sant'anna Jr., G.L., (1997) Appl. Biochem. Biotechnol., 63, p. 409Lima, V.M.G., Krieger, N., Sarquis, M.I.M., Mitchell, D.A., Ramos, L.P., Fontana, J.D., (2003) Food Technol. Biotechnol., 41, p. 105Ema, T., Kageyama, M., Korenaga, T., Sakai, T., (2003) Tetrahedron: Asymmetry, 14, p. 3943Hou, C.T., (1994) J. Ind. Microbiol., 13, p. 242Lopez, N., Pernas, M.A., Pastrana, L.M., Sanchez, A., Valero, F., Rua, M.I., (2004) Biotechnol. Prog., 20, p. 65Kamini, N.R., Maia, J.G.S., Puvanakrishnan, R., (1998) Process Biochem., 33, p. 505Namboodiri, V.M.H., Chattopadhavaya, R., (2000) Lipids, 35, p. 495Chahinian, H., Vanot, G., Ibrik, A., Rugani, N., Sarda, I., Comeau, I.C., (2000) Biosci. Biotechnol. Biochem., 64, p. 215Tsujisaka, Y., Iwai, M., Tominaga, Y., (1973) Agr. Biol. Chem., 37, p. 1457Mustranta, A., (1992) Appl. Microbiol. Biotechnol., 38, p. 61D'Antona, N., Lombardi, P., Nicolosi, G., Salvo, G., (2002) Process Biochem., 38, p. 373Shang, C.-S., Hsu, C.-S., (2003) Biotechnol. Lett., 25, p. 413Ujang, Z., Husain, W.H., Seng, M.C., Rashid, A.H.A., (2003) Process Biochem., 38, p. 1483Arroyo, M., Montera, J.M.S., Sinisterra, J.V., (1999) Enzyme Microb. Technol., 24, p. 3Sánchez, A., Valero, F., Lafuente, J., Solà, C., (1998) Biotechnol. Lett., 20, p. 1145Sánchez, A., Valero, F., Lafuente, J., Solà, C., (2000) Enzyme Microb. Technol., 27, p. 157Cardenas, F., Alvarez, E., Castro-Alvarez, M.S., Sanchez-Montero, J.M.S., Valmaseda, M., Elson, S.W., Sinisterra, J.V., (2001) J. Mol. Catal. B: Enzym., 14, p. 111Tsai, S.W., Wei, H.J., (1994) Enzyme Microb. Technol., 16, p. 328Costa, V.E.U., De Amorim, H.L.N., (1999) Quim. Nova, 22, p. 863Pepin, P., Lortie, R., (1999) Biotechnol. Bioeng., 63, p. 504Raza, S., Fransson, L., Huit, K., (2001) Protein Sci., 10, p. 329Ducret, A., Traani, M., Lortie, R., (1998) Enzyme Microb. Technol., 22, p. 212Ueji, S.I., Ueda, A., Tanaka, H., Watanabe, K., Okamoto, T., Ebara, Y., (2003) Biotechnol. Lett., 25, p. 83Ghanem, A., (2003) Org. Biomol. Chem., 1, p. 1282Okahata, Y., Fujimoto, Y., Ikiro, A., (1995) J. Org. Chem., 60, p. 2244De La Casa, R.M., Guisán, J.M., Sánches-Montero, J.M., Sinisterra, J.V., (2002) Enzyme Microb. Technol., 30, p. 30Sánchez, A., Ferrer, P., Serrano, A., Valero, F., Solà, C., Pernas, M., Rúa, M.I., Sánchez-Montero, J.M., (1999) J. Biotechnol., 69, p. 16

    Response Surface Analysis For The Production Of An Enantioselective Lipase From Aspergillus Niger By Solid-state Fermentation

    No full text
    The lipase produced by the Aspergillus niger strain AC-54 has been widely studied due to its enantioselectivity for racemic mixtures. This study aimed to optimize the production of this enzyme using statistical methodology. Initially a Plackett-Burman (PB) design was used to evaluate the effects of the culture medium components and the culture conditions. Twelve factors were screened: Water content, glucose, yeast extract, peptone, olive oil, temperature, NaH 2P0 4, KH 2P0 4, MgS0 4-7H 20, CaCl 2, NaCI, and MnS0 4. The screening showed that the significant factors were water content, glucose, yeast extract, peptone, NaH 2P0 4, and KH 2P0 4, which were optimized using response surface methodology (RSM) and a mathematical model obtained to explain the behavioral process. The best lipase activity was attained using the following conditions: Water content (20%), glucose (4.8%), yeast extract (4.0%), and NaH2P04 (4.0%). The predicted lipase activity was 33.03 U/ml and the experimental data confirmed the validity of the model. The enzymatic activity was expressed as μmoles of oleic acid released per minute of reaction (μmol/min). © 2009, The Microbiological Society of Korea.475563571Burkert, J.F.M., Maugeri, F., Rodrigues, M.I., Optimization of extracellular lipase production by Geotrichum sp. using factorial design (2004) Bioresour. Technol., 91, pp. 77-84Carvalho, P.O., Calafatti, S.A., Marassi, M., Contesini, F.J., Bizaco, R., Potencial de biocatálise enantioseletiva de lipases microbianas (2005) Quim. Nova., 28, pp. 614-621Carvalho, P.O., Contesini, F.J., Bizaco, R., Calafatti, S.A., Macedo, G.A., Optimization of enantioselective resolution of racemic ibuprofen by native lipase from Aspergillus niger (2006) J. Ind. Microbiol. Biotechnol., 33, pp. 713-718Carvalho, P.O., Contesini, F.J., Ikegaki, M., Enzymatic resolution of (R,S)-ibuprofen and (R,S)-ketoprofen by microbial lipases from native and commercial sources (2006) Braz. J. Microbiol., 37, pp. 329-337Contesini, F.J., Carvalho, P.O., Esterification of (R,S)-ibuprofen by native and commercial lipases in a two-phase system containing ionic liquids (2006) Tetrahedron Asymmetry, 17, pp. 2069-2073Elibol, M., Ozer, D., Response surface analysis of lipase production by freely suspended Rhizopus arrhizus (2002) Process Biochem, 38, pp. 367-372Folony, G., Armas, J.C., Mendonza, J.C.D., Hernandéz, J.L.M., Production of extracellular lipase from Aspergillus niger by solid-state fermentation (2006) Food Technol. Biotechnol., 44, pp. 235-240Fu, X., Zhu, X., Gao, K., Duan, J., Oil and fat hydrolysis with lipase from Aspergillus sp (1995) J. Am. Oil. Chem. Soc., 75, pp. 527-531Hatzinikolaou, D.G., Macris, J.B., Christakopoulos, P., Kekos, D., Kolisis, F.N., Fountoukidis, G., Production and partial characterization of extracellular lipase from Aspergillus niger (1996) Biotechnol. Lett., I8, pp. 547-552Hesseltine, C.W., Biotechnology report: Solid state fermentations. Biotechnol (1972) Bioeng, 14, pp. 517-532Houng, J.Y., Hsieh, C.L., Chen, S.T., Lipase-catalysed kinetic resolution of ethyl D,L-2-amino-4-phenylbutyrate by hydrolysis (1996) Biotechnol. Technol., 10, pp. 353-358Kamini, N.R., Mala, J.G.S., Puvanakrishnan, R., Lipase production from Aspergillus niger by solid state fermentation using gingelly oil cake (1998) Process Biochem, 33, pp. 505-511Macris, J.B., Kourentzi, E., Hatzinikolaou, D.G., Studies on the location and regulation of lipase production by Aspergillus niger (1996) Process Biochem, 31, pp. 807-812Mahadik, N.D., Putambar, U.S., Bastawde, K.B., Khire, J.M., Gokhale, D.V., Production of acidic lipase by Aspergillus niger in solid state fermentation (2002) Process Biochem, 38, pp. 715-721Mala, J.G.S., Edwinoliver, N.G., Kamini, N.R., Puvanakrishnan, R., Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594 (2007) J. Gen. Appl. Microbiol., 53, pp. 247-253Pal, N., Das, S., Kundu, A.K., Influence of culture and nutritional conditions on the production of lipase by submerged culture of Aspergillus niger (1978) J. Ferment. Technol., 56, pp. 593-598Pandey, A., Recent developments in solid state fermentation (1992) Process Biochem, 27, pp. 109-116Plackett, R.L., Burman, J.P., The design of optimum multifactorial experiments (1946) Biometrika, 33, pp. 305-325Pokorny, D., Cimerman, A., Steiner, W., Aspergillus niger lipases: Induction, isolation and characterization of two lipases from MZKI, A116 strain (1997) J. Mol. Catal. B: Enzym., 2, pp. 215-222Rajendran, A., Thangavelu, V., Optimization of medium composition for lipase prodution by Candida rugosa NCIM 3462 using response surface methodology (2007) Can. J. Microbiol., 53, pp. 643-655Silva, D.M., (2004) Master's Degree Thesis, , Brasil: Universidade São Francisco, Bragança Paulista, São PaulosThomson, C.A., Delaquis, P.J., Mazza, G., Detection and measurement of microbial lipase activity: A review (1999) Crit. Rev. Food Sci. Nutr., 39, pp. 165-187Vargas, G.D.L.P., Treichel, H., Oliveira, D., Beneti, S.C., Freire, D.M.G., Luccio, M.D., Optimization of lipase production by Penicillium simplicissimum in soybean meal (2008) J. Chem. Technol. Biotechnol., 83, pp. 47-5
    corecore