26 research outputs found
Transitions between Inherent Structures in Water
The energy landscape approach has been useful to help understand the dynamic
properties of supercooled liquids and the connection between these properties
and thermodynamics. The analysis in numerical models of the inherent structure
(IS) trajectories -- the set of local minima visited by the liquid -- offers
the possibility of filtering out the vibrational component of the motion of the
system on the potential energy surface and thereby resolving the slow
structural component more efficiently. Here we report an analysis of an IS
trajectory for a widely-studied water model, focusing on the changes in
hydrogen bond connectivity that give rise to many IS separated by relatively
small energy barriers. We find that while the system \emph{travels} through
these IS, the structure of the bond network continuously modifies, exchanging
linear bonds for bifurcated bonds and usually reversing the exchange to return
to nearly the same initial configuration. For the 216 molecule system we
investigate, the time scale of these transitions is as small as the simulation
time scale ( fs). Hence for water, the transitions between each of
these IS is relatively small and eventual relaxation of the system occurs only
by many of these transitions. We find that during IS changes, the molecules
with the greatest displacements move in small ``clusters'' of 1-10 molecules
with displacements of nm, not unlike simpler liquids.
However, for water these clusters appear to be somewhat more branched than the
linear ``string-like'' clusters formed in a supercooled Lennar d-Jones system
found by Glotzer and her collaborators.Comment: accepted in PR
Time and length scales in supercooled liquids
We numerically obtain the first quantitative demonstration that development
of spatial correlations of mobility as temperature is lowered is responsible
for the ``decoupling'' of transport properties of supercooled liquids. This
result further demonstrates the necessity of a spatial description of the glass
formation and therefore seriously challenges a number of popular alternative
theoretical descriptions.Comment: 4 pages, 4 figs; improved version: new refs and discussion
Synthesis and properties of ambient temperature molten salts based on the quaternary ammonium ion
The synthesis of 16 tetraalkyl ammonium bis(trifluoromethane sulfonyl) imide salts, (CnH2n+1)4 +N -N (SO2CF3)2 (n = 1, 2, 3, 4), (C2H5)2(i-C3H7)2 +N -N(SO2CF3)2, (C2H5)(CH3)(i-C3H7)2+N-N(SO2CF3)2, (n-C7H15)(C2H5)i-C3H7)2+N-N(SO2CF3)2 and (CnH2n+1)(CmH2m+1)3+N-N(SO2CF3)2 (n = 6,7,8; m = 1, 2, 4) are reported in this paper. Trends in properties of these salts are discussed. The symmetrical tetraalkyl ammonium salts with the bis(trifluoromethyl sulfonyl) imide anion exhibited a lower melting point than that of corresponding ammonium halides. The salts with low symmetry ammonium cations were found to be of generally lower melting point, and many were stable liquids at room temperature. Several of these did not crystallize during cooling below room temperature and exhibited glass transition temperatures in the region of −60 °C∼−80 °C. A comparison of properties between the ammonium imide salts and corresponding trifluoromethane sulfonates is also presented. <br /
The production of ultrafine ferrite during hot torsion testing of a 0.11 Wt Pct C steel
Ultrafine ferrite grain sizes were produced in a 0.11C-1.6Mn-0.2Si steel by torsion testing isothermally at 675 °C after air cooling from 1250 °C. The ferrite was observed to form intragranularly beyond a von Mises equivalent tensile strain of approximately 0.7 to 0.8 and the number fraction of intragranular ferrite grains continued to increase as the strain level increased. Ferrite nucleated to form parallel and closely spaced linear arrays or “rafts” of many discrete ultrafine ferrite grains. It is shown that ferrite nucleates during deformation on defects developed within the austenite parallel to the macroscopic shear direction (i.e., dynamic strain-induced transformation). A model austenitic Ni-30Fe alloy was used to study the substructure developed in the austenite under similar test conditions as that used to induce intragranular ferrite in the steel. It is shown that the most prevalent features developed during testing are microbands. It is proposed that high-energy jogged regions surrounding intersecting microbands provide potential sites for ferrite nucleation at lower strains, while at higher strains, the walls of the microbands may also act as nucleation sites.<br /