8 research outputs found

    Constraints on the viscosity of the continental crust and mantle from GPS measurements and postseismic deformation models in Western Mongolia

    No full text
    Journal of Geophysical Research, v. 108, n. B10, p. 2502, 2003. http://dx.doi.org/10.1029/2002JB002374International audienceWe use GPS measurements and models of postseismic deformation caused by seven M6.8 to 8.4 earthquakes that occurred in the past 100 years in Mongolia to assess the viscosity of the lower crust and upper mantle. We find an upper mantle viscosity between 1 Â 10 18 and 4 Â 10 18 Pa s. The presence of such a weak mantle is consistent with results from independent seismological and petrological studies that show an abnormally hot upper mantle beneath Mongolia. The viscosity of the lower crust is less well constrained, but a weak lower crust (3 Â 10 16 to 2 Â 10 17 Pa s) is preferred by the data. Using our best fit upper mantle and lower crust viscosities, we find that the postseismic effects of viscoelastic relaxation on present-day horizontal GPS velocities are small (<2 mm yr À1) but still persist 100 years after the 1905, M8.4, Bolnay earthquake. This study shows that the GPS velocity field in the Baikal-Mongolia area can be modeled as the sum of (1) a rigid translation and rotation of the whole network, (2) a 3-5 mm yr À1 simple shear velocity gradient between the Siberian platform to the north and northern China to the south, and (3) the contribution of postseismic deformation, mostly caused by the 1905 Bolnay-Tsetserleg sequence and by the smaller, but more recent, 1957 Bogd earthquake

    Exploring GPS Observations of Postseismic Deformation Following the 2012 MW7.8 Haida Gwaii and 2013 MW7.5 Craig, Alaska Earthquakes: Implications for Viscoelastic Earth Structure

    No full text
    The Queen Charlotte-Fairweather Fault (QC-FF) system off the coast of British Columbia and southeast Alaska is a highly active dextral strike-slip plate boundary that accommodates ∼50 mm/yr of relative motion between the Pacific and North America plates. Nine MW ≥ 6.7 earthquakes have occurred along the QC-FF system since 1910, including a MS(G-R)8.1 event in 1949. Two recent earthquakes, the October 28, 2012 Haida Gwaii (MW7.8) and January 5, 2013 Craig, Alaska (MW7.5) events, produced postseismic transient deformation that was recorded in the motions of 25 nearby continuous Global Positioning System (cGPS) stations. Here, we use 5+ yr of cGPS measurements to characterize the underlying mechanisms of postseismic deformation and to constrain the viscosity structure of the upper mantle surrounding the QC-FF. We construct forward models of viscoelastic deformation driven by coseismic stress changes from these two earthquakes and explore a large set of laterally heterogeneous viscosity structures that incorporate a relatively weak back-arc domain; we then evaluate each model based on its fit to the postseismic signals in our cGPS data. In determining best-fit model structures, we additionally incorporate the effects of afterslip following the 2012 event. Our results indicate the occurrence of a combination of temporally decaying afterslip and vigorous viscoelastic relaxation of the mantle asthenosphere. In addition, our best-fit viscosity structure (transient viscosity of 1.4–2.0 × 1018 Pa s; steady-state viscosity of 1019 Pa s) is consistent with the range of upper mantle viscosities determined in previous studies of glacial isostatic rebound and postseismic deformation. © 2021. American Geophysical Union. All Rights Reserved.6 month embargo; first published: 03 June 2021This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Water in the Earth’s Interior: Distribution and Origin

    No full text
    corecore