8 research outputs found

    The orbifold cohomology of moduli of genus 3 curves

    Full text link
    In this work we study the additive orbifold cohomology of the moduli stack of smooth genus g curves. We show that this problem reduces to investigating the rational cohomology of moduli spaces of cyclic covers of curves where the genus of the covering curve is g. Then we work out the case of genus g=3. Furthermore, we determine the part of the orbifold cohomology of the Deligne-Mumford compactification of the moduli space of genus 3 curves that comes from the Zariski closure of the inertia stack of M_3.Comment: 29 pages, 2 figures. Minor changes, to appear in Manuscripta Mat

    An early Permian brachiopod–gastropod fauna from the Calytrix Formation, Barbwire Terrace, Canning Basin, Western Australia

    Get PDF
    A small brachiopod–gastropod fauna from a core close to the base of the Calytrix Formation within the Grant Group includes the brachiopods Altiplecus decipiens (Hosking), Myodelthyrium dickinsi (Thomas), Brachythyrinella narsarhensis (Reed), Neochonetes (Sommeriella) obrieni Archbold, Tivertonia barbwirensis sp. nov. and the gastropod Peruvispira canningensis sp. nov. The fauna has affinities with that of the late Sakmarian‒early Artinskian Nura Nura Member directly overlying the Grant Group in other parts of the basin but, as with all lower Cisuralian (and Pennsylvanian) glacial strata in Western Australia, its precise age remains poorly constrained, especially in terms of correlation to international stages. Although the Calytrix fauna lies within the Pseudoreticulatispora confluens Palynozone, the only real constraint on its age (and that of the associated glacially influenced strata) is from Sakmarian (Sterlitamakian) and stratigraphically younger faunas. A brief review of radiometric ages from correlative strata elsewhere in Gondwana shows that those ages need to be updated. The presence of Asselian strata and the position of the Carboniferous‒Permian boundary remain unclear in Western Australia.Arturo César Taboada [[email protected]], CONICET-Laboratorio de Investigaciones en Evolución y Biodiversidad (LIEB), Facultad de Ciencias Naturales, Sede Esquel, Universidad Nacional de la Patagonia ‘San Juan Bosco’, Edificio de Aulas, Ruta Nacional 259, km. 16,5, Esquel U9200, Chubut, Argentina; Arthur Mory [[email protected]], Geological Survey of Western Australia, 100 Plain Street, East Perth, WA 6004, School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Guang R. Shi [[email protected]], School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia; David W. Haig [[email protected]], School of Earth and Environment (M004), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; María Karina Pinilla [[email protected]], División Paleozoología Invertebrados, Museo de Ciencias Naturales de La Plata, Paseo del Bosque s/n, 1900 La Plata, Buenos Aires, Argentina
    corecore