27 research outputs found

    Similarity and contrasts between thermodynamic properties at the critical point of liquid alkali metals and of electron-hole droplets

    Full text link
    The recent experimental study by means of time-resolved luminescence measurements of an electron-hole liquid (EHL) in diamond by Shimano et al. [Phys. Rev. Lett. 88 (2002) 057404] prompts us to compare and contrast critical temperature T_c and critical density n_c relations in liquid alkali metals with those in electron-hole liquids. The conclusion drawn is that these systems have similarities with regard to critical properties. In both cases the critical temperature is related to the cube root of the critical density. The existence of this relation is traced to Coulomb interactions and to systematic trends in the dielectric constant of the electron-hole systems. Finally a brief comparison between the alkalis and EHLs of the critical values for the compressibility ratio Z_c is also given

    Linear response function around a localized impurity in a superconductor

    Full text link
    Imaging the effects of an impurity like Zn in high-Tc superconductors [Nature 61 (2000) 746] has rekindled interest in defect problems in the superconducting phase. This has prompted us here to re-examine the early work of March and Murray [Phys. Rev. 120 (1960) 830] on the linear response function in an initially translationally invariant Fermi gas. In particular, we present corresponding results for a superconductor at zero temperature, both in the s- and in the d-wave case, and mention their direct physical relevance in the case when the impurity potential is highly localized
    corecore