999 research outputs found
Precision muon lifetime and capture experiments at PSI
The muLan experiment at the Paul Scherrer Institute will measure the lifetime
of the positive muon with a precision of 1 ppm, giving a value for the Fermi
coupling constant G_F at the level of 0.5 ppm. Meanwhile, by measuring the
observed lifetime of the negative muon in pure hydrogen, the muCap experiment
will determine the rate of muon capture, giving the proton's pseudoscalar
coupling g_p to 7%. This coupling can be calculated precisely from heavy baryon
chiral perturbation theory and therefore permits a test of QCD's chiral
symmetry.Comment: 4 pages, 2 figures; proceedings of the 6th International Workshop on
Neutrino Factories and Superbeams (NuFACT04), July 26-August 1, 2004, Osaka,
Japan; revised to add one reference (other small edits to conserve length
Semilinear mixed problems on Hilbert complexes and their numerical approximation
Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010),
281-354] that linear, mixed variational problems, and their numerical
approximation by mixed finite element methods, can be studied using the
powerful, abstract language of Hilbert complexes. In another recent article
[arXiv:1005.4455], we extended the Arnold-Falk-Winther framework by analyzing
variational crimes (a la Strang) on Hilbert complexes. In particular, this gave
a treatment of finite element exterior calculus on manifolds, generalizing
techniques from surface finite element methods and recovering earlier a priori
estimates for the Laplace-Beltrami operator on 2- and 3-surfaces, due to Dziuk
[Lecture Notes in Math., vol. 1357 (1988), 142-155] and later Demlow [SIAM J.
Numer. Anal., 47 (2009), 805-827], as special cases. In the present article, we
extend the Hilbert complex framework in a second distinct direction: to the
study of semilinear mixed problems. We do this, first, by introducing an
operator-theoretic reformulation of the linear mixed problem, so that the
semilinear problem can be expressed as an abstract Hammerstein equation. This
allows us to obtain, for semilinear problems, a priori solution estimates and
error estimates that reduce to the Arnold-Falk-Winther results in the linear
case. We also consider the impact of variational crimes, extending the results
of our previous article to these semilinear problems. As an immediate
application, this new framework allows for mixed finite element methods to be
applied to semilinear problems on surfaces.Comment: 22 pages; v2: major revision, particularly sharpening of error
estimates in Section
Curved Flats, Pluriharmonic Maps and Constant Curvature Immersions into Pseudo-Riemannian Space Forms
We study two aspects of the loop group formulation for isometric immersions
with flat normal bundle of space forms. The first aspect is to examine the loop
group maps along different ranges of the loop parameter. This leads to various
equivalences between global isometric immersion problems among different space
forms and pseudo-Riemannian space forms. As a corollary, we obtain a
non-immersibility theorem for spheres into certain pseudo-Riemannian spheres
and hyperbolic spaces.
The second aspect pursued is to clarify the relationship between the loop
group formulation of isometric immersions of space forms and that of
pluriharmonic maps into symmetric spaces. We show that the objects in the first
class are, in the real analytic case, extended pluriharmonic maps into certain
symmetric spaces which satisfy an extra reality condition along a totally real
submanifold. We show how to construct such pluriharmonic maps for general
symmetric spaces from curved flats, using a generalised DPW method.Comment: 21 Pages, reference adde
Scalar Glueball Decay Into Pions In Effective Theory
We discuss the mixing between the sigma meson sigma and the "pure" glueball
field H and study the decays of the scalar glueball candidates f_0(1370),
f_0(1500) and f_0(1710) (a linear combination of sigma and H) into two pions in
an effective linear sigma model.Comment: 10 pages and 3 figures (an extended version of hep-ph/9805412), to
appear in Phys. Rev.
Radiative production of invisible charginos in photon photon collision
If in a supersymmetric model, the lightest chargino is nearly degenerate with
the lightest neutralino, the former can decay into the latter alongwith a soft
pion (or a lepton-neutrino pair). Near degeneracy of the chargino and
neutralino masses can cause the other decay products (the pion or the lepton)
to be almost invisible. Photon-photon colliders offer a possibility of clean
detection of such an event through a hard photon tag.Comment: 12 pages, 5 postscript figure
Does black-hole growth depend on the cosmic environment?
It is well known that environment affects galaxy evolution, which is broadly related to supermassive black hole (SMBH) growth. We investigate whether SMBH evolution also depends on host-galaxy local (sub-Mpc) and global (≈1–10 Mpc) environment. We construct the surface-density field (local environment) and cosmic web (global environment) in the Cosmic Evolution Survey (COSMOS) field at z = 0.3–3.0. The environments in COSMOS range from the field to clusters (Mhalo ≲ 1014 M⊙), covering the environments where ≈99 per cent of galaxies in the Universe reside. We measure sample-averaged SMBH accretion rate ( BHAR¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ) from X-ray observations, and study its dependence on overdensity and cosmic-web environment at different redshifts while controlling for galaxy stellar mass (M⋆). Our results show that BHAR¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ does not significantly depend on overdensity or cosmic-web environment once M⋆ is controlled, indicating that environment-related physical mechanisms (e.g. tidal interaction and ram-pressure stripping) might not significantly affect SMBH growth. We find that BHAR¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ is strongly related to host-galaxy M⋆, regardless of environment
Evidence for two-quark content of in exclusive decays
Inspired by a large decay branching ratio (BR) of
measured by Belle recently, we propose that a significant evidence of the
component of in could be
demonstrated in exclusive decays by the observation of in
the final states and . We predict the BRs of to be () while
the unknown wave functions of () are chosen to fit the
observed decays of .Comment: 4 pages, 2 figures, Revtex4, version to appear in PR
Parton content of the real photon: astrophysical implications
We possess convincing experimental evidence for the fact that the real photon
has non-trivial parton structure. On the other hand, interactions of the cosmic
microwave background photons with high energy particles propagating through the
Universe play an important role in astrophysics. In this context, to invoke the
parton content could be convenient for calculations of the probabilities of
different processes involving these photons. As an example, the cross section
of inclusive resonant boson production in the reaction is calculated by using the parton language. Neutrino--photon deep
inelastic scattering is considered.Comment: 4 pages, 2 figures. The spin states of the initial particles in the
reaction are correctly treated. As a result, the
corresponding cross section becomes two times greater than the one from the
previous version. Some changes in the tex
The newly observed open-charm states in quark model
Comparing the measured properties of the newly observed open-charm states
D(2550), D(2600), D(2750), D(2760), D_{s1}(2710), D_{sJ}(2860), and
D_{sJ}(3040) with our predicted spectroscopy and strong decays in a constituent
quark model, we find that: (1) the D(2\,^1S_0) assignment to D(2550) remains
open for its too broad width determined by experiment; (2) the D(2600) and
can be identified as the 2\,^3S_1-1\,^3D_1 mixtures; (3) if
the D(2760) and D(2750) are indeed the same resonance, they would be the
D(1\,^3D_3); otherwise, they could be assigned as the D(1\,^3D_3) and
, respectively; (4) the could be either the
's partner or the D_s(1\,^3D_3); and (5) both the
and interpretations for the seem likely. The
and radiative decays of these sates are also studied. Further
experimental efforts are needed to test the present quarkonium assignments for
these new open-charm states.Comment: 26 pages,7 figures, journal versio
The molecular systems composed of the charmed mesons in the doublet
We study the possible heavy molecular states composed of a pair of charm
mesons in the H and S doublets. Since the P-wave charm-strange mesons
and are extremely narrow, the future experimental
observation of the possible heavy molecular states composed of
and may be feasible if they really exist.
Especially the possible states may be searched for via the
initial state radiation technique.Comment: 42 pages, 4 tables, 31 figures. Improved numerical results and
Corrected typos
- …