765 research outputs found

    Lower limb stiffness estimation during running: the effect of using kinematic constraints in muscle force optimization algorithms

    Get PDF
    The focus of this paper is on the effect of muscle force optimization algorithms on the human lower limb stiffness estimation. By using a forward dynamic neuromusculoskeletal model coupled with a muscle short-range stiffness model we computed the human joint stiffness of the lower limb during running. The joint stiffness values are calculated using two different muscle force optimization procedures, namely: Toque-based and Torque/Kinematic-based algorithm. A comparison between the processed EMG signal and the corresponding estimated muscle forces with the two optimization algorithms is provided. We found that the two stiffness estimates are strongly influenced by the adopted algorithm. We observed different magnitude and timing of both the estimated muscle forces and joint stiffness time profile with respect to each gait phase, as function of the optimization algorithm used

    Spin-charge separation at small lengthscales in the 2D t-J model

    Full text link
    We consider projected wavefunctions for the 2D t−Jt-J model. For various wavefunctions, including correlated Fermi-liquid and Luttinger-type wavefunctions we present the static charge-charge and spin-spin structure factors. Comparison with recent results from a high-temperature expansion by Putikka {\it et al.} indicates spin-charge separation at small lengthscales.Comment: REVTEX, 5 pages, 5 figures hardcopies availabl

    Underlying Pairing States in Cuprate Superconductors

    Full text link
    In this Letter, we develop a microscopic theory to describe the close proximity between the insulating antiferromagnetic (AF) order and the d-wave superconducting (dSC) order in cuprates. We show that the cuprate ground states form a configuration of coherent pairing states consisting of extended singlet Cooper pairs and triplet π\pi pairs, which can simultaneously describe AF and dSC orders.Comment: 4 papes, 1 figur

    Critical exponents of a multicomponent anisotropic t-J model in one dimension

    Full text link
    A recently presented anisotropic generalization of the multicomponent supersymmetric t−Jt-J model in one dimension is investigated. This model of fermions with general spin-SS is solved by Bethe ansatz for the ground state and the low-lying excitations. Due to the anisotropy of the interaction the model possesses 2S2S massive modes and one single gapless excitation. The physical properties indicate the existence of Cooper-type multiplets of 2S+12S+1 fermions with finite binding energy. The critical behaviour is described by a c=1c=1 conformal field theory with continuously varying exponents depending on the particle density. There are two distinct regimes of the phase diagram with dominating density-density and multiplet-multiplet correlations, respectively. The effective mass of the charge carriers is calculated. In comparison to the limit of isotropic interactions the mass is strongly enhanced in general.Comment: 10 pages, 3 Postscript figures appended as uuencoded compressed tar-file to appear in Z. Phys. B, preprint Cologne-94-474

    Anomalous tag diffusion in the asymmetric exclusion model with particles of arbitrary sizes

    Full text link
    Anomalous behavior of correlation functions of tagged particles are studied in generalizations of the one dimensional asymmetric exclusion problem. In these generalized models the range of the hard-core interactions are changed and the restriction of relative ordering of the particles is partially brocken. The models probing these effects are those of biased diffusion of particles having size S=0,1,2,..., or an effective negative "size" S=-1,-2,..., in units of lattice space. Our numerical simulations show that irrespective of the range of the hard-core potential, as long some relative ordering of particles are kept, we find suitable sliding-tag correlation functions whose fluctuations growth with time anomalously slow (t1/3t^{{1/3}}), when compared with the normal diffusive behavior (t1/2t^{{1/2}}). These results indicate that the critical behavior of these stochastic models are in the Kardar-Parisi-Zhang (KPZ) universality class. Moreover a previous Bethe-ansatz calculation of the dynamical critical exponent zz, for size S≄0S \geq 0 particles is extended to the case S<0S<0 and the KPZ result z=3/2z=3/2 is predicted for all values of S∈ZS \in {Z}.Comment: 4 pages, 3 figure

    Generalized Statistics and High Tc Superconductivity

    Full text link
    Introducing the generalized, non-extensive statistics proposed by Tsallis[1988], into the standard s-wave pairing BCS theory of superconductivity in 2D yields a reasonable description of many of the main properties of high temperature superconductors, provided some allowance is made for non-phonon mediated interactions.Comment: 14 pages, 5 figure

    Low energy and dynamical properties of a single hole in the t-Jz model

    Full text link
    We review in details a recently proposed technique to extract information about dynamical correlation functions of many-body hamiltonians with a few Lanczos iterations and without the limitation of finite size. We apply this technique to understand the low energy properties and the dynamical spectral weight of a simple model describing the motion of a single hole in a quantum antiferromagnet: the t−Jzt-J_z model in two spatial dimension and for a double chain lattice. The simplicity of the model allows us a well controlled numerical solution, especially for the two chain case. Contrary to previous approximations we have found that the single hole ground state in the infinite system is continuously connected with the Nagaoka fully polarized state for Jz→0J_z \to 0. Analogously we have obtained an accurate determination of the dynamical spectral weight relevant for photoemission experiments. For Jz=0J_z=0 an argument is given that the spectral weight vanishes at the Nagaoka energy faster than any power law, as supported also by a clear numerical evidence. It is also shown that spin charge decoupling is an exact property for a single hole in the Bethe lattice but does not apply to the more realistic lattices where the hole can describe closed loop paths.Comment: RevTex 3.0, 40 pages + 16 Figures in one file self-extracting, to appear in Phys. Rev

    The Dimensional-Reduction Anomaly in Spherically Symmetric Spacetimes

    Get PDF
    In D-dimensional spacetimes which can be foliated by n-dimensional homogeneous subspaces, a quantum field can be decomposed in terms of modes on the subspaces, reducing the system to a collection of (D-n)-dimensional fields. This allows one to write bare D-dimensional field quantities like the Green function and the effective action as sums of their (D-n)-dimensional counterparts in the dimensionally reduced theory. It has been shown, however, that renormalization breaks this relationship between the original and dimensionally reduced theories, an effect called the dimensional-reduction anomaly. We examine the dimensional-reduction anomaly for the important case of spherically symmetric spaces.Comment: LaTeX, 19 pages, 2 figures. v2: calculations simplified, references adde

    Numerical renormalization group study of the 1D t-J model

    Full text link
    The one-dimensional (1D) t−Jt-J model is investigated using the density matrix renormalization group (DMRG) method. We report for the first time a generalization of the DMRG method to the case of arbitrary band filling and prove a theorem with respect to the reduced density matrix that accelerates the numerical computation. Lastly, using the extended DMRG method, we present the ground state electron momentum distribution, spin and charge correlation functions. The 3kF3k_F anomaly of the momentum distribution function first discussed by Ogata and Shiba is shown to disappear as JJ increases. We also argue that there exists a density-independent JcJ_c beyond which the system becomes an electron solid.Comment: Wrong set of figures were put in the orginal submissio

    Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric

    Get PDF
    Continuing our investigation of the regularization of the noise kernel in curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001 (2001)] we adopt the modified point separation scheme for the class of optical spacetimes using the Gaussian approximation for the Green functions a la Bekenstein-Parker-Page. In the first example we derive the regularized noise kernel for a thermal field in flat space. It is useful for black hole nucleation considerations. In the second example of an optical Schwarzschild spacetime we obtain a finite expression for the noise kernel at the horizon and recover the hot flat space result at infinity. Knowledge of the noise kernel is essential for studying issues related to black hole horizon fluctuations and Hawking radiation backreaction. We show that the Gaussian approximated Green function which works surprisingly well for the stress tensor at the Schwarzschild horizon produces significant error in the noise kernel there. We identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX
    • 

    corecore