5 research outputs found
Infrared supercontinuum from a large mode area PCF under extreme picosecond excitation
Evolution of the long-wavelength edge of supercontinuum (SC) in a large mode-area photonic crystal fiber (LMA PCF) under extreme (close to the fiber damage threshold) picosecond excitation is analyzed for the first time to our knowledge. The obtained results are interpreted on the basis of the numerical simulations explaining both spectral and temporal characteristics of SC in dependence on the pulse power and the fiber length. An existence of the minimum LMA PCF length providing the broadest spectrum under the highest picosecond excitations is predicted. The multimode cross-modulation inside the LMA PCF is analyzed, as well
Theory of Attosecond Pulse Generation
This chapter will discuss the theoretical aspects of producing attosecond pulses via the process of high harmonic generation driven by an intense infrared laser pulse. We will discuss the generation of attosecond pulses both at the single atom and at the macroscopic level, including a discussion of phase matching. Our goal is to broaden the understanding of attosecond pulse generation beyond the single atom level, where one thinks about the emission in terms of the laser-atom interaction alone, to include macroscopic aspects of this process. © Springer-Verlag Berlin Heidelberg 2013