82 research outputs found

    Dipole and Quadrupole Moments of Mirror Nuclei 8B and 8li

    Full text link
    Magnetic dipole and electric quadrupole moments of the mirror nuclei 8Li and 8B are analysed in the framework of the multiparticle shell model by using two approaches : i) the one-particle spectroscopic factors and ii) the one-particle fractional parentage coefficients. These two approaches are compared both each to other and with a microscopic multicluster model. The one-particle nucleon states are calculated taking into account the continuum by the method of the expansion of the Sturm - Liouville functions. The experimental magnetic and quadrupole moments of 8Li and 8Bare reproduced well by using fractional parentage coefficients technique. The root mean-square radii and the radial density distributions are obtained for these nuclei.Comment: 20 pages 1 figur

    Determination of pi-N scattering lengths from pionic hydrogen and pionic deuterium data

    Get PDF
    The pi-N s-wave scattering lengths have been inferred from a joint analysis of the pionic hydrogen and the pionic deuterium x-ray data using a non-relativistic approach in which the pi-N interaction is simulated by a short-ranged potential. The pi-d scattering length has been calculated exactly by solving the Faddeev equations and also by using a static approximation. It has been shown that the same very accurate static formula for pi-d scattering length can be derived (i) from a set of boundary conditions; (ii) by a reduction of Faddeev equations; and (iii) through a summation of Feynman diagrams. By imposing the requirement that the pi-d scattering length, resulting from Faddeev-type calculation, be in agreement with pionic deuterium data, we obtain bounds on the pi-N scattering lengths. The dominant source of uncertainty on the deduced values of the pi-N scattering lengths are the experimental errors in the pionic hydrogen data.Comment: RevTeX, 20 pages,4 PostScript figure

    Properties of odd nuclei and the impact of time-odd mean fields: A systematic Skyrme-Hartree-Fock analysis

    Get PDF
    We present a systematic analysis of the description of odd nuclei by the Skyrme-Hartree-Fock approach augmented with pairing in BCS approximation and blocking of the odd nucleon. Current and spin densities in the Skyrme functional produce time-odd mean fields (TOMF) for odd nuclei. Their effect on basic properties (binding energies, odd-even staggering, separation energies and spectra) is investigated for the three Skyrme parameterizations SkI3, SLy6, and SV-bas. About 1300 spherical and axially-deformed odd nuclei with 16 < Z < 92 are considered. The calculations demonstrate that the TOMF effect is generally small, although not fully negligible. The influence of the Skyrme parameterization and the consistency of the calculations are much more important. With a proper choice of the parameterization, a good description of binding energies and their differences is obtained, comparable to that for even nuclei. The description of low-energy excitation spectra of odd nuclei is of varying quality depending on the nucleus
    corecore