9 research outputs found
Ca L2,3 edge XANES and Sr K edge EXAFS study of hydroxyapatite and fossil bone apatite
Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca and Ca sites in the unit cell gives rise to specific spectral features. Moreover, Ca L-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca or Ca sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy
Characterization of fossil remains using XRF, XPS and XAFS spectroscopies
Synchrotron radiation micro-X-Ray Fluorescence (m-XRF), X-ray photoelectron (XPS) and X-ray Absorption Fine Structure (XAFS) spectroscopies are applied for the study of paleontological findings. More specifically the costal plate of a gigantic terrestrial turtle Titanochelon bacharidisi and a fossilized coprolite of the cave spotted hyena Crocuta crocuta spelaea are studied. Ca L2,3-edge NEXAFS and Ca 2p XPS are applied for the identification and quantification of apatite and Ca containing minerals. XRF mapping and XAFS are employed for the study of the spatial distribution and speciation of the minerals related to the deposition environment.Fil: Zougrou, I.M.. Aristotle University of Thessalonik; GreciaFil: Katsikini, M.. Aristotle University of Thessalonik; GreciaFil: Pinakidou, F.. Aristotle University of Thessalonik; GreciaFil: Brzhezinskaya, M.. No especifĂca;Fil: Papadopoulou, L.. Aristotle University of Thessalonik; GreciaFil: Vlachos, Evangelos. Aristotle University of Thessalonik; Grecia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Tsoukala, E.. Aristotle University of Thessalonik; GreciaFil: Paloura, E.C.. Aristotle University of Thessalonik; Greci
Influence of depositional environment in fossil teeth a micro XRF and XAFS study
The formation of metal-rich phases during the fossilization of vertebrate fossil teeth, recovered from various deposition environments in northern Greece, is studied by means of synchrotron radiation X-ray fluorescence (SR-XRF) as well as Fe and Mn K edge X-ray absorption fine structure (XAFS) spectroscopy. XRF line-scans from the samples' cross-sections revealed different contamination paths for Mn and Fe. The two-dimensional XRF maps illustrate the spatial distribution of P, Ca, Mn and Fe as well as the precipitation of Fe-rich phases in cementum, dentin and dentinal tubules. Goethite, lepidocrocite and ferrihydrite were detected in the samples' cross-section by means of Fe K edge EXAFS spectroscopy. Moreover the Fe and Mn K edge EXAFS revealed the presence of vivianite and birnessite (MnO2) on the external surface of two samples
Study of fossil bones by synchrotron radiation micro-spectroscopic techniques and scanning electron microscopy
Earlymost Villafranchian fossil bones of an artiodactyl and a perissodactyl from the Milia excavation site in Grevena, Greece, were studied in order to evaluate diagenetic effects. Optical microscopy revealed the different bone types (fibro-lamellar and Haversian, respectively) of the two fragments and their good preservation state. The spatial distribution of bone apatite and soil-originating elements was studied using micro-X-ray fluorescence (µ-XRF) mapping and scanning electron microscopy. The approximate value of the Ca/P ratio was 2.2, as determined from scanning electron microscopy measurements. Bacterial boring was detected close to the periosteal region and Fe bearing oxides were found to fill bone cavities, e.g. Haversian canals and osteocyte lacunae. In the perissodactyl bone considerable amounts of Mn were detected close to cracks (the Mn/Fe weight ratio takes values up to 3.5). Goethite and pyrite were detected in both samples by means of metallographic microscopy. The local Ca/P ratio determined with µ-XRF varied significantly in metal-poor spots indicating spatial inhomogeneities in the ionic substitutions. XRF line scans that span the bone cross sections revealed that Fe and Mn contaminate the bones from both the periosteum and medullar cavity and aggregate around local maxima. The formation of goethite, irrespective of the local Fe concentration, was verified by the Fe K-edge X-ray absorption fine structure (XAFS) spectra. Finally, Sr K-edge extended XAFS (EXAFS) revealed that Sr substitutes for Ca in bone apatite without obvious preference to the Ca1 or Ca2 unit-cell site occupation