46,406 research outputs found
Combined large-N_c and heavy-quark operator analysis for the chiral Lagrangian with charmed baryons
The chiral Lagrangian with charmed baryons of spin and
is analyzed. We consider all counter terms that are relevant at
next-to-next-to-next-to-leading order (NLO) in a chiral extrapolation of
the charmed baryon masses. At NLO we find 16 low-energy parameters. There
are 3 mass parameters for the anti-triplet and the two sextet baryons, 6
parameters describing the meson-baryon vertices and 7 symmetry breaking
parameters. The heavy-quark spin symmetry predicts four sum rules for the
meson-baryon vertices and degenerate masses for the two baryon sextet fields.
Here a large- operator analysis at NLO suggests the relevance of one
further spin-symmetry breaking parameter. Going from NLO to NLO adds 17
chiral symmetry breaking parameters and 24 symmetry preserving parameters. For
the leading symmetry conserving two-body counter terms involving two baryon
fields and two Goldstone boson fields we find 36 terms. While the heavy-quark
spin symmetry leads to sum rules, an expansion in at
next-to-leading order (NLO) generates parameter relations. A
combined expansion leaves 3 unknown parameters only. For the symmetry breaking
counter terms we find 17 terms, for which there are sum rules from the
heavy-quark spin symmetry and sum rules from a expansion at
NLO.Comment: 34 pages - one table - corrections applie
Secure thermal infrared communications using engineered blackbody radiation
The thermal (emitted) infrared frequency bands, from 20–40 THz and 60–100 THz, are best known for applications in thermography. This underused and unregulated part of the spectral range offers opportunities for the development of secure communications. The ‘THz Torch' concept was recently presented by the authors. This technology fundamentally exploits engineered blackbody radiation, by partitioning thermally-generated spectral noise power into pre-defined frequency channels; the energy in each channel is then independently pulsed modulated and multiplexing schemes are introduced to create a robust form of short-range secure communications in the far/mid infrared. To date, octave bandwidth (25–50 THz) single-channel links have been demonstrated with 380 bps speeds. Multi-channel ‘THz Torch' frequency division multiplexing (FDM) and frequency-hopping spread-spectrum (FHSS) schemes have been proposed, but only a slow 40 bps FDM scheme has been demonstrated experimentally. Here, we report a much faster 1,280 bps FDM implementation. In addition, an experimental proof-of-concept FHSS scheme is demonstrated for the first time, having a 320 bps data rate. With both 4-channel multiplexing schemes, measured bit error rates (BERs) of < 10(−6) are achieved over a distance of 2.5 cm. Our approach represents a new paradigm in the way niche secure communications can be established over short links
Mixed Statistics on 01-Fillings of Moon Polyominoes
We establish a stronger symmetry between the numbers of northeast and
southeast chains in the context of 01-fillings of moon polyominoes. Let \M be
a moon polyomino with rows and columns. Consider all the 01-fillings of
\M in which every row has at most one 1. We introduce four mixed statistics
with respect to a bipartition of rows or columns of \M. More precisely, let
and be the union of rows whose
indices are in . For any filling , the top-mixed (resp. bottom-mixed)
statistic (resp. ) is the sum of the number of
northeast chains whose top (resp. bottom) cell is in , together
with the number of southeast chains whose top (resp. bottom) cell is in the
complement of . Similarly, we define the left-mixed and
right-mixed statistics and , where is a subset
of the column index set . Let be any of these
four statistics , , and , we show that the joint distribution of the pair is symmetric and independent of the subsets . In
particular, the pair of statistics is
equidistributed with (\se(M),\ne(M)), where \se(M) and are the
numbers of southeast chains and northeast chains of , respectively.Comment: 20 pages, 6 figure
Detailed Modeling and Experimental Assessments of Automotive Dry Clutch Engagement
© 2013 IEEE. The characteristics of the clutch engagement process would have significant influences on the torque transmissibility and operation comfort. However, some crucial components are simplified in many previous literature, which would cause imprecision. Therefore, it is important to build a detailed mathematical model of these components and inspect the whole process of clutch engagement. In order to improve the torque transmissibility and achieve better pedal releasing comfort, solutions based on the modeling of the clutch cover assembly and the friction disc assembly, the analysis of the clamping force and the releasing characteristics of the release bearing are proposed in this paper. Furthermore, models of the crucial components such as the diaphragm spring, which connects the straps and cushion plate, are built and the corresponding mechanical properties are analyzed. Based on the manufacturing tolerance, the life cycle, and the wear properties, diaphragm spring correction formula is proposed by referring to Almen-Laszlo method. On the system level, the whole engagement process is divided into four stages because of the differences between the engaging and disengaging processes, which would affect the pedal releasing comfort in the manual transmission system and the shifting quality in the automated transmission system. To demonstrate the effectiveness of the proposed method, detailed mathematic models are built and the corresponding experiments are conducted
- …