2,428 research outputs found

    Very High Precision Determination of Low-Energy Parameters: The 2-d Heisenberg Quantum Antiferromagnet as a Test Case

    Full text link
    The 2-d spin 1/2 Heisenberg antiferromagnet with exchange coupling JJ is investigated on a periodic square lattice of spacing aa at very small temperatures using the loop-cluster algorithm. Monte Carlo data for the staggered and uniform susceptibilities are compared with analytic results obtained in the systematic low-energy effective field theory for the staggered magnetization order parameter. The low-energy parameters of the effective theory, i.e.\ the staggered magnetization density Ms=0.30743(1)/a2{\cal M}_s = 0.30743(1)/a^2, the spin stiffness ρs=0.18081(11)J\rho_s = 0.18081(11) J, and the spin wave velocity c=1.6586(3)Jac = 1.6586(3) J a are determined with very high precision. Our study may serve as a test case for the comparison of lattice QCD Monte Carlo data with analytic predictions of the chiral effective theory for pions and nucleons, which is vital for the quantitative understanding of the strong interaction at low energies.Comment: 5 pages, 4 figures, 1 tabl

    Presence of Legionellaceae in warm water supplies and typing of strains by polymerase chain reaction

    Get PDF
    Outbreaks of Legionnaire's disease present a public health challenge especially because fatal outcomes still remain frequent. The aim of this study was to describe the abundance and epidemiology of Legionellaceae in the human-made environment. Water was sampled from hot-water taps in private and public buildings across the area of Göttingen, Germany, including distant suburbs. Following isolation, we used polymerase chain reaction in order to generate strain specific banding profiles of legionella isolates. In total, 70 buildings were examined. Of these 18 (26%) had the bacterium in at least one water sample. Legionella pneumophila serogroups 1, 4, 5 and 6 could be identified in the water samples. Most of the buildings were colonized solely by one distinct strain, as proven by PCR. In three cases equal patterns were found in separate buildings. There were two buildings in this study where isolates with different serogroups were found at the same time

    On certain finiteness questions in the arithmetic of modular forms

    Get PDF
    We investigate certain finiteness questions that arise naturally when studying approximations modulo prime powers of p-adic Galois representations coming from modular forms. We link these finiteness statements with a question by K. Buzzard concerning p-adic coefficient fields of Hecke eigenforms. Specifically, we conjecture that for fixed N, m, and prime p with p not dividing N, there is only a finite number of reductions modulo p^m of normalized eigenforms on \Gamma_1(N). We consider various variants of our basic finiteness conjecture, prove a weak version of it, and give some numerical evidence.Comment: 25 pages; v2: one of the conjectures from v1 now proved; v3: restructered parts of the article; v4: minor corrections and change

    Systematic Effective Field Theory Investigation of Spiral Phases in Hole-Doped Antiferromagnets on the Honeycomb Lattice

    Get PDF
    Motivated by possible applications to the antiferromagnetic precursor of the high-temperature superconductor Nax_xCoO2_2\cdotyH2_2O, we use a systematic low-energy effective field theory for magnons and holes to study different phases of doped antiferromagnets on the honeycomb lattice. The effective action contains a leading single-derivative term, similar to the Shraiman-Siggia term in the square lattice case, which gives rise to spirals in the staggered magnetization. Depending on the values of the low-energy parameters, either a homogeneous phase with four or a spiral phase with two filled hole pockets is energetically favored. Unlike in the square lattice case, at leading order the effective action has an accidental continuous spatial rotation symmetry. Consequently, the spiral may point in any direction and is not necessarily aligned with a lattice direction.Comment: 10 pages, 6 figure

    Graphical Tensor Product Reduction Scheme for the Lie Algebras so(5) = sp(2), su(3), and g(2)

    Full text link
    We develop in detail a graphical tensor product reduction scheme, first described by Antoine and Speiser, for the simple rank 2 Lie algebras so(5) = sp(2), su(3), and g(2). This leads to an efficient practical method to reduce tensor products of irreducible representations into sums of such representations. For this purpose, the 2-dimensional weight diagram of a given representation is placed in a "landscape" of irreducible representations. We provide both the landscapes and the weight diagrams for a large number of representations for the three simple rank 2 Lie algebras. We also apply the algebraic "girdle" method, which is much less efficient for calculations by hand for moderately large representations. Computer code for reducing tensor products, based on the graphical method, has been developed as well and is available from the authors upon request.Comment: 43 pages, 18 figure

    The (2+1)-d U(1) Quantum Link Model Masquerading as Deconfined Criticality

    Get PDF
    The (2+1)(2+1)-d U(1) quantum link model is a gauge theory, amenable to quantum simulation, with a spontaneously broken SO(2) symmetry emerging at a quantum phase transition. Its low-energy physics is described by a (2+1)(2+1)-d \RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. At the quantum phase transition, the model mimics some features of deconfined quantum criticality, but remains linearly confining. Deconfinement only sets in at high temperature.Comment: 4.5 pages, 6 figure

    The structure of industrial training in Kenya and the role of the directorate of industrial training

    Get PDF
    The paper presents an overview of technical education in Kenya as well as of the wide variety of industrial training domains, and the important parts they each play in the total structure of industrial training. A comprehensive discussion, and a good deal of data concerning training schemes of the Directorate of Industrial Training are presented. An effort is made to highlight the variety of issues and problems involved in the industrial training levy and rebate system, particularly with regard to the effect of formal training under the system upon other types of training. Special attention is drawn to the nature of overall training needs in the economy and the appropriateness of the response by existing institutions. The paper presents a cohesive view of the scope and interrelationships of industrial training activity in Kenya

    Crystalline Confinement

    Full text link
    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)(2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2)SO(2) global symmetry. The low-energy physics is described by a (2+1)(2+1)-d RP(1)\mathbb{R}P(1) effective field theory, perturbed by a dangerously irrelevant SO(2)SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.Comment: Proceedings of the 31st International Symposium on Lattice Field Theory - LATTICE 201

    Real-Time Simulation of Large Open Quantum Spin Systems driven by Measurements

    Full text link
    We consider a large quantum system with spins 12\frac{1}{2} whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution of a 2-d Heisenberg antiferromagnet, which is driven to a disordered phase, either by sporadic measurements or by continuous monitoring described by Lindblad evolution.Comment: 5 pages, 7 figure
    corecore