3,435 research outputs found

    Turing's three philosophical lessons and the philosophy of information

    Get PDF
    In this article, I outline the three main philosophical lessons that we may learn from Turing's work, and how they lead to a new philosophy of information. After a brief introduction, I discuss his work on the method of levels of abstraction (LoA), and his insistence that questions could be meaningfully asked only by specifying the correct LoA. I then look at his second lesson, about the sort of philosophical questions that seem to be most pressing today. Finally, I focus on the third lesson, concerning the new philosophical anthropology that owes so much to Turing's work. I then show how the lessons are learned by the philosophy of information. In the conclusion, I draw a general synthesis of the points made, in view of the development of the philosophy of information itself as a continuation of Turing's work. This journal is © 2012 The Royal Society.Peer reviewe

    Epitaxial graphene on SiC(0001): More than just honeycombs

    Full text link
    The potential of graphene to impact the development of the next generation of electronics has renewed interest in its growth and structure. The graphitization of hexagonal SiC surfaces provides a viable alternative for the synthesis of graphene, with wafer-size epitaxial graphene on SiC(0001) now possible. Despite this recent progress, the exact nature of the graphene-SiC interface and whether the graphene even has a semiconducting gap remain controversial. Using scanning tunneling microscopy with functionalized tips and density functional theory calculations, here we show that the interface is a warped carbon sheet consisting of three-fold hexagon-pentagon-heptagon complexes periodically inserted into the honeycomb lattice. These defects relieve the strain between the graphene layer and the SiC substrate, while still retaining the three-fold coordination for each carbon atom. Moreover, these defects break the six-fold symmetry of the honeycomb, thereby naturally inducing a gap: the calculated band structure of the interface is semiconducting and there are two localized states near K below the Fermi level, explaining the photoemission and carbon core-level data. Nonlinear dispersion and a 33 meV gap are found at the Dirac point for the next layer of graphene, providing insights into the debate over the origin of the gap in epitaxial graphene on SiC(0001). These results indicate that the interface of the epitaxial graphene on SiC(0001) is more than a dead buffer layer, but actively impacts the physical and electronic properties of the subsequent graphene layers

    First-principles, atomistic thermodynamics for oxidation catalysis

    Full text link
    Present knowledge of the function of materials is largely based on studies (experimental and theoretical) that are performed at low temperatures and ultra-low pressures. However, the majority of everyday applications, like e.g. catalysis, operate at atmospheric pressures and temperatures at or higher than 300 K. Here we employ ab initio, atomistic thermodynamics to construct a phase diagram of surface structures in the (T,p)-space from ultra-high vacuum to technically-relevant pressures and temperatures. We emphasize the value of such phase diagrams as well as the importance of the reaction kinetics that may be crucial e.g. close to phase boundaries.Comment: 4 pages including 2 figure files. Submitted to Phys. Rev. Lett. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001)

    Get PDF
    Using ab initio thermodynamics we compile a phase diagram for the surface of Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto ignored polar termination with octahedral iron and oxygen forming a wave-like structure along the [110]-direction is identified as the lowest energy configuration over a broad range of oxygen gas-phase conditions. This novel geometry is confirmed in a x-ray diffraction analysis. The stabilization of the Fe3O4(001)-surface goes together with dramatic changes in the electronic and magnetic properties, e.g., a halfmetal-to-metal transition.Comment: 4 pages, 4 figure
    • …
    corecore