2,436 research outputs found

    Collaboration in electronic resource provision in university libraries: SHEDL, a Scottish case study

    Get PDF
    This case study examines the growth of collaboration among Scottish higher education institutions. Following a summary of the work of the Scottish Confederation of University and Research Libraries (SCURL), more detailed information is provided on collaboration in the fields of acquisition, licensing, selection, and purchasing. Some of the UK background is outlined, relating to NESLi2 in particular, in order to illuminate the options within Scotland. The origins of negotiations on electronic resource provision within Scotland are described, drawing on developments in other countries including Ireland and Scandinavia. After initial setbacks, the implementation of the Scottish Higher Education Digital Library (SHEDL) from 2007 to 2009 is detailed. Current benefits arising from SHEDL are explained, and some possible future developments are discussed

    Structure and play: rethinking regulation in the higher education sector

    Get PDF
    This paper explores possible tactics for academics working within a context of increasing regulation and constraint. One suggested tactic is to move outside of a creativity-conformity binary. Rather than understanding creativity and conformity as separable, where one is seen as excluding the other, the authors consider the potential of examining the relationships between them. The theme of 'structure and play' illustrates the argument. In the first part of the paper, using various examples from art and design - fields generally associated with creativity - the authors explore the interrelatedness of creativity and conformity. For example, how might design styles, which are generally understood as creative outcomes, constrain creativity and lead to conformity within the design field? Is fashion producing creativity or conformity? Conversely, the ways in which conformity provides the conditions for creativity are also examined. For example, the conformity imposed by the state on artists in the former communist bloc contributed to a thriving underground arts movement which challenged conformity and state regulation. Continuing the theme of 'structure and play', the authors recount a story from an Australian university which foregrounds the ongoing renegotiation of power relations in the academy. This account illustrates how programmatic government in a university, with its aim of regulating conduct, can contribute to unanticipated outcomes. The authors propose that a Foucauldian view of distributed power is useful for academics operating in a context of increasing regulation, as it brings into view sites where power might begin to be renegotiated

    Formation of misfit dislocations in strained-layer GaAs/In<sub>x</sub>Ga<sub>1–x</sub>As/GaAs heterostructures during postfabrication thermal processing

    Get PDF
    It is demonstrated that relaxation of GaAs/InxGa1–xAs/GaAs strained-layer heterostructures can be brought about by postfabrication thermal processing. Misfit dislocations are introduced into the structure during thermal processing, even though the thickness of the strained layer is well below the critical value predicted by the Matthews–Blakeslee model. The misfit dislocations are observed to be of both 60° mixed type and 90° pure edge type. As no relaxation occurs at the lower temperatures encountered during fabrication by molecular-beam epitaxy, it can be inferred that the critical condition for the formation of misfit dislocations is not only a function of strained-layer thickness and composition, but also of temperature. This observation cannot be accounted for by differential thermal expansion or diffusion across the strained-layer interfaces, but the temperature-dependent Peierls force may offer an explanation. The high temperature required to produce relaxation of these structures suggests that they are sufficiently thermally stable for most practical applications

    Phase Transition in \nu=2 Bilayer Quantum Hall State

    Get PDF
    The Hall-plateau width and the activation energy were measured in the bilayer quantum Hall state at filling factor \nu=2, 1 and 2/3, by changing the total electron density and the density ratio in the two quantum wells. Their behavior are remarkably different from one to another. The \nu=1 state is found stable over all measured range of the density difference, while the \nu=2/3$ state is stable only around the balanced point. The \nu=2 state, on the other hand, shows a phase transition between these two types of the states as the electron density is changed.Comment: 5 pages including figures, RevTe

    Simple model for 1/f noise

    Full text link
    We present a simple stochastic mechanism which generates pulse trains exhibiting a power law distribution of the pulse intervals and a 1/fα1/f^\alpha power spectrum over several decades at low frequencies with α\alpha close to one. The essential ingredient of our model is a fluctuating threshold which performs a Brownian motion. Whenever an increasing potential V(t)V(t) hits the threshold, V(t)V(t) is reset to the origin and a pulse is emitted. We show that if V(t)V(t) increases linearly in time, the pulse intervals can be approximated by a random walk with multiplicative noise. Our model agrees with recent experiments in neurobiology and explains the high interpulse interval variability and the occurrence of 1/fα1/f^\alpha noise observed in cortical neurons and earthquake data.Comment: 4 pages, 4 figure

    Interaction of surface acoustic waves with a two-dimensional electron gas in the presence of spin splitting of the Landau bands

    Full text link
    The absorption and variation of the velocity of a surface acoustic wave of frequency ff= 30 MHz interacting with two-dimensional electrons are investigated in GaAs/AlGaAs heterostructures with an electron density n=(1.3−2.8)×1011cm−2n=(1.3 - 2.8) \times 10^{11} cm^{-2} at TT=1.5 - 4.2 K in magnetic fields up to 7 T. Characteristic features associated with spin splitting of the Landau level are observed. The effective g factor and the width of the spin-split Landau bands are determined: g∗≃5g^* \simeq 5 and AA=0.6 meV. The greater width of the orbital-split Landau bands (2 meV) relative to the spin-split bands is attributed to different shielding of the random fluctuation potential of charged impurities by 2D electrons. The mechanisms of the nonlinearities manifested in the dependence of the absorption and the velocity increment of the SAW on the SAW power in the presence of spin splitting of the Landau levels are investigated.Comment: Revtex 5 pages + 5 EPS Figures, v.2 - minor corrections in text and pic

    Thermal and Tunneling Pair Creation of Quasiparticles in Quantum Hall Systems

    Full text link
    We make a semiclassical analysis of thermal pair creations of quasiparticles at various filling factors in quantum Hall systems. It is argued that the gap energy is reduced considerably by the Coulomb potential made by impurities. It is also shown that a tunneling process becomes important at low temperature and at strong magnetic field. We fit typical experimental data excellently based on our semiclassical results of the gap energy.Comment: 6 pages, 6 PS figures, to be published in Phys.Rev.

    Universal Prefactor of Activated Conductivity in the Quantum Hall Effect

    Full text link
    The prefactor of the activated dissipative conductivity in a plateau range of the quantum Hall effect is studied in the case of a long-range random potential. It is shown that due to long time it takes for an electron to drift along the perimeter of a large percolation cluster, phonons are able to maintain quasi-equilibrium inside the cluster. The saddle points separating such clusters may then be viewed as ballistic point contacts between electron reservoirs with different electrochemical potentials. The prefactor is universal and equal to 2e2/he^2/h at an integer filling factor Μ\nu and to 2e2/q2he^2/q^{2}h at Μ=p/q\nu=p/q.Comment: 4 pages + 2 figures by reques

    Hopf term and the effective Lagrangian for the Skyrmions in a two-dimensional electron gas at small g-factor

    Full text link
    We study interacting electrons in two dimensions moving in the lowest Landau level under the condition that the Zeeman energy is much smaller than the Coulomb energy and the filling factor is one. In this case, Skyrmion quasiparticles play an important role. Here, we present a simple and transparent derivation of the corresponding effective Lagrangian. In its kinetic part, we find a non-zero Hopf term the prefactor of which we determine rigorously. In the Hamiltonian part, we calculate, by means of a gradient expansion, the Skyrmion-Skyrmion interaction completely up to fourth order in spatial derivatives.Comment: 4 pages, Late
    • 

    corecore