80 research outputs found
Infrared spectroscopy of phytochrome and model pigments
Fourier-transform infrared difference spectra between the red-absorbing and far-red-absorbing forms of oat phytochrome have been measured in H2O and 2H2O. The difference spectra are compared with infrared spectra of model compounds, i.e. the (5Z,10Z,15Z)- and (5Z,10Z,15E)-isomers of 2,3,7,8,12,13,17,18-octaethyl-bilindion (Et8-bilindion), 2,3-dihydro-2,3,7,8,12,13,17,18-octaethyl-bilindion (H2Et8-bilindion), and protonated H2Et8-bilindion in various solvents. The spectra of the model compounds show that only for the protonated forms can clear differences between the two isomers be detected. Since considerable differences are present between the spectra of Et8-bilindion and H2Et8-bilindion, it is concluded that only the latter compound can serve as a model system of phytochrome. The 2H2O effect on the difference spectrum of phytochrome supports the view that the chromophore in red-absorbing phytochrome is protonated and suggests, in addition, that it is also protonated in far-red-absorbing phytochrome. The spectra show that protonated carboxyl groups are influenced. The small amplitudes in the difference spectra exclude major changes of protein secondary structure
Effect of Mill Type on Morphology of AA6013 Aluminium Powder
ABSTRACTIn conventional recycling method, metal chips are cast after pressing and melting in electric arc furnace. Material loss occurs during the recycling from liquid metal due to the several reasons. Direct recycling method which produces the aluminium powder from aluminium chips using mechanical mill can be an alternative to conventional recycling method. Thus material and energy losses, and labour cost will be reduced by direct recycling method without melting.In this study, the particle morphology of powder direct recycled from AA6013 aluminium alloy chips with cryogenic, disc and ball type grinders is investigated. Mechanical milling resulted flaky and irregular shaped AA6013 particles. It was ascertained that the chips did not break sufficiently in despite of the long duration milling mechanisms by ball mill. Cryogenic mill provides the energy required for milling mechanisms to act. Disc mill has the highest impact energy was determined. Consequently, efficiency of ball mill is lower than the efficiency of cryogenic and disc type mills. Shape factors of powders produced with ball and cryogenic mills were found greater than that of the powder produced by disc mill. Disc mill has the most efficient and effective impact energy which produces the smaller particles per minute, was determined.Keywords: Direct recycling method, powder production, scrap chips, aluminium alloy.
Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation
It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments
Light Sterile Neutrinos and Short Baseline Neutrino Oscillation Anomalies
We study two possible explanations for short baseline neutrino oscillation
anomalies, such as the LSND and MiniBooNE anti-neutrino data, and for the
reactor anomaly. The first scenario is the mini-seesaw mechanism with two
eV-scale sterile neutrinos. We present both analytic formulas and numerical
results showing that this scenario could account for the short baseline and
reactor anomalies and is consistent with the observed masses and mixings of the
three active neutrinos. We also show that this scenario could arise naturally
from an effective theory containing a TeV-scale VEV, which could be related to
other TeV-scale physics. The minimal version of the mini-seesaw relates the
active-sterile mixings to five real parameters and favors an inverted
hierarchy. It has the interesting property that the effective Majorana mass for
neutrinoless double beta decay vanishes, while the effective masses relevant to
tritium beta decay and to cosmology are respectively around 0.2 and 2.4 eV. The
second scenario contains only one eV-scale sterile neutrino but with an
effective non-unitary mixing matrix between the light sterile and active
neutrinos. We find that though this may explain the anomalies, if the
non-unitarity originates from a heavy sterile neutrino with a large
(fine-tuned) mixing angle, this scenario is highly constrained by cosmological
and laboratory observations.Comment: 25 pages, 6 figure
- …