195 research outputs found
STUDIES ON PLANT BILE PIGMENTS.
The (4 Z, 10 2, 15Ej-2,3-dihydrobilindione 4, along with the fully unsaturated (E, 2, Z)-analogue
8, has been prepared from the corresponding (Z, Z, Z)-isomer by a variation of Falk's method
(Falk et ul., 1980). The photochemical and acid-catalyzed back-reactions have been studied by UV-vis
and 'H-NMR spectroscopy
The KATRIN Experiment
The KArlsruhe TRitium Neutrino mass experiment, KATRIN, aims to search for
the mass of the electron neutrino with a sensitivity of 0.2 eV/c^2 (90% C.L.)
and a detection limit of 0.35 eV/c^2 (5 sigma). Both a positive or a negative
result will have far reaching implications for cosmology and the standard model
of particle physics and will give new input for astroparticle physics and
cosmology. The major components of KATRIN are being set up at the Karlsruhe
Institut of Technology in Karlsruhe, Germany, and test measurements of the
individual components have started. Data taking with tritium is scheduled to
start in 2012.Comment: 3 pages, 1 figure, proceedings of the TAUP 2009 International
Conference on Topics in Astroparticle and Underground Physics, to be
published in Journal of Physics, Conference Serie
The KATRIN Pre-Spectrometer at reduced Filter Energy
The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of
the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement
of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An
ultra-low background of about b = 10 mHz is among the requirements to reach
this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E
filter type are used in a tandem configuration. This setup, however, produces a
Penning trap which could lead to increased background. We have performed test
measurements showing that the filter energy of the pre-spectrometer can be
reduced by several keV in order to diminish this trap. These measurements were
analyzed with the help of a complex computer simulation, modeling multiple
electron reflections both from the detector and the photoelectric electron
source used in our test setup.Comment: 22 pages, 12 figure
Technical design and commissioning of the KATRIN large-volume air coil system
The KATRIN experiment is a next-generation direct neutrino mass experiment
with a sensitivity of 0.2 eV (90% C.L.) to the effective mass of the electron
neutrino. It measures the tritium -decay spectrum close to its endpoint
with a spectrometer based on the MAC-E filter technique. The -decay
electrons are guided by a magnetic field that operates in the mT range in the
central spectrometer volume; it is fine-tuned by a large-volume air coil system
surrounding the spectrometer vessel. The purpose of the system is to provide
optimal transmission properties for signal electrons and to achieve efficient
magnetic shielding against background. In this paper we describe the technical
design of the air coil system, including its mechanical and electrical
properties. We outline the importance of its versatile operation modes in
background investigation and suppression techniques. We compare magnetic field
measurements in the inner spectrometer volume during system commissioning with
corresponding simulations, which allows to verify the system's functionality in
fine-tuning the magnetic field configuration. This is of major importance for a
successful neutrino mass measurement at KATRIN.Comment: 32 pages, 16 figure
A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment
The KATRIN experiment aims to determine the neutrino mass scale with a
sensitivity of 200 meV/c^2 (90% C.L.) by a precision measurement of the shape
of the tritium -spectrum in the endpoint region. The energy analysis of
the decay electrons is achieved by a MAC-E filter spectrometer. To determine
the transmission properties of the KATRIN main spectrometer, a mono-energetic
and angular-selective electron source has been developed. In preparation for
the second commissioning phase of the main spectrometer, a measurement phase
was carried out at the KATRIN monitor spectrometer where the device was
operated in a MAC-E filter setup for testing. The results of these measurements
are compared with simulations using the particle-tracking software
"Kassiopeia", which was developed in the KATRIN collaboration over recent
years.Comment: 19 pages, 16 figures, submitted to European Physical Journal
Influence of chromophores on quarternary structure of phycobiliproteins from the cyanobacterium, Mastigocladus laminosus
Chromophores of C-phycocyanin and phycoerythrο-cyanin have been chemically modified by reduction to
rubins , bleaching , photoisomerization , or perturbation
with bulky substituents. Pigments containing modified
chromophores, or hybrids containing modified and unmodified chromophores in individual protomers have been prepared. All modifications inhibit the association of the
(aß)-protomers of these pigments to higher aggregates. The
results demonstrate a pronounced effect of the state of
the chromophores on biliprotein quaternary structure. It
may be important in phycobi1isome assembly , and also in
the dual function of biliproteins as (i) antenna pigments
for photosynthesis and (ii) reaction centers for photomor-phogenesis
KATRIN background due to surface radioimpurities
The goal of the KArlsruhe TRItrium Neutrino (KATRIN) experiment is the determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c at 90 % C.L.. This goal can only be achieved with a very low background level in the order of 10 mcps in the detector region of interest. A possible background source are α-decays on the inner surface of the KATRIN Main Spectrometer. Rydberg atoms, produced in sputtering processes accompanying the α-decays, are not influenced by electric or magnetic fields and freely propagate inside the vacuum of the Main Spectrometer. Here, they can be ionized by thermal radiation and the released electrons directly contribute to the KATRIN background. Two α-sources, Ra and Th, were installed at the Main Spectrometer with the purpose of temporarily increasing the background in order to study α-decay induced background processes. In this paper, we present a possible background generation mechanism and measurements performed with these two radioactive sources. Our results show a clear correlation between α-activity on the inner spectrometer surface and background from the volume of the spectrometer. Two key characteristics of the Main Spectrometer background – the dependency on the inner electrode offset potential, and the radial distribution – could be reproduced with this artificially induced background. These findings indicate a high contribution of α-decay induced events to the residual KATRIN background
- …