13,440 research outputs found

    GAPS IN THE HEISENBERG-ISING MODEL

    Full text link
    We report on the closing of gaps in the ground state of the critical Heisenberg-Ising chain at momentum π\pi. For half-filling, the gap closes at special values of the anisotropy Δ=cos(π/Q)\Delta= \cos(\pi/Q), QQ integer. We explain this behavior with the help of the Bethe Ansatz and show that the gap scales as a power of the system size with variable exponent depending on Δ\Delta. We use a finite-size analysis to calculate this exponent in the critical region, supplemented by perturbation theory at Δ0\Delta\sim 0. For rational 1/r1/r fillings, the gap is shown to be closed for {\em all} values of Δ\Delta and the corresponding perturbation expansion in Δ\Delta shows a remarkable cancellation of various diagrams.Comment: 12 RevTeX pages + 4 figures upon reques

    Crossover from Fermi Liquid to Non-Fermi Liquid Behavior in a Solvable One-Dimensional Model

    Full text link
    We consider a quantum moany-body problem in one-dimension described by a Jastrow type, characterized by an exponent λ\lambda and a parameter γ\gamma. We show that with increasing γ\gamma, the Fermi Liquid state (γ=0)\gamma=0) crosses over to non-Fermi liquid states, characterized by effective "temperature".Comment: 8pp. late

    Partially Solvable Anisotropic t-J Model with Long-Range Interactions

    Full text link
    A new anisotropic t-J model in one dimension is proposed which has long-range hopping and exchange. This t-J model is only partially solvable in contrast to known integrable models with long-range interaction. In the high-density limit the model reduces to the XXZ chain with the long-range exchange. Some exact eigenfunctions are shown to be of Jastrow-type if certain conditions for an anisotropy parameter are satisfied. The ground state as well as the excitation spectrum for various cases of the anisotropy parameter and filling are derived numerically. It is found that the Jastrow-type wave function is an excellent trial function for any value of the anisotropy parameter.Comment: 10 pages, 3 Postscript figure

    EUROMOD: the European Union tax-benefit microsimulation model

    Get PDF
    This paper aims to provide an introduction to the current state of the art of EUROMOD, the European Union tax-benefit microsimulation model. It explains the original motivations for building a multi-country EU-wide model and summarises its current organisation. It provides an overview of EUROMOD components, covering its policy scope, the input data, the validation process and some technical aspects such as the tax-benefit programming language and the user interface. The paper also reviews some recent applications of EUROMOD and, finally, considers future developments

    Dyson's Brownian Motion and Universal Dynamics of Quantum Systems

    Full text link
    We establish a correspondence between the evolution of the distribution of eigenvalues of a N×NN\times N matrix subject to a random Gaussian perturbing matrix, and a Fokker-Planck equation postulated by Dyson. Within this model, we prove the equivalence conjectured by Altshuler et al between the space-time correlations of the Sutherland-Calogero-Moser system in the thermodynamic limit and a set of two-variable correlations for disordered quantum systems calculated by them. Multiple variable correlation functions are, however, shown to be inequivalent for the two cases.Comment: 10 pages, revte

    Solutions to the Multi-Component 1/R Hubbard Model

    Full text link
    In this work we introduce one dimensional multi-component Hubbard model of 1/r hopping and U on-site energy. The wavefunctions, the spectrum and the thermodynamics are studied for this model in the strong interaction limit U=U=\infty. In this limit, the system is a special example of SU(N)SU(N) Luttinger liquids, exhibiting spin-charge separation in the full Hilbert space. Speculations on the physical properties of the model at finite on-site energy are also discussed.Comment: 9 pages, revtex, Princeton-May1

    Universal Level dynamics of Complex Systems

    Full text link
    . We study the evolution of the distribution of eigenvalues of a N×NN\times N matrix subject to a random perturbation drawn from (i) a generalized Gaussian ensemble (ii) a non-Gaussian ensemble with a measure variable under the change of basis. It turns out that, in the case (i), a redefinition of the parameter governing the evolution leads to a Fokker-Planck equation similar to the one obtained when the perturbation is taken from a standard Gaussian ensemble (with invariant measure). This equivalence can therefore help us to obtain the correlations for various physically-significant cases modeled by generalized Gaussian ensembles by using the already known correlations for standard Gaussian ensembles. For large NN-values, our results for both cases (i) and (ii) are similar to those obtained for Wigner-Dyson gas as well as for the perturbation taken from a standard Gaussian ensemble. This seems to suggest the independence of evolution, in thermodynamic limit, from the nature of perturbation involved as well as the initial conditions and therefore universality of dynamics of the eigenvalues of complex systems.Comment: 11 Pages, Latex Fil

    Solution of Some Integrable One-Dimensional Quantum Systems

    Get PDF
    In this paper, we investigate a family of one-dimensional multi-component quantum many-body systems. The interaction is an exchange interaction based on the familiar family of integrable systems which includes the inverse square potential. We show these systems to be integrable, and exploit this integrability to completely determine the spectrum including degeneracy, and thus the thermodynamics. The periodic inverse square case is worked out explicitly. Next, we show that in the limit of strong interaction the "spin" degrees of freedom decouple. Taking this limit for our example, we obtain a complete solution to a lattice system introduced recently by Shastry, and Haldane; our solution reproduces the numerical results. Finally, we emphasize the simple explanation for the high multiplicities found in this model
    corecore