419 research outputs found

    Complementarity of dark matter detectors in light of the neutrino background

    Get PDF
    Direct detection dark matter experiments looking for WIMP-nucleus elastic scattering will soon be sensitive to an irreducible background from neutrinos which will drastically affect their discovery potential. Here we explore how the neutrino background will affect future ton-scale experiments considering both spin-dependent and spin-independent interactions. We show that combining data from experiments using different targets can improve the dark matter discovery potential due to target complementarity. We find that in the context of spin-dependent interactions, combining results from several targets can greatly enhance the subtraction of the neutrino background for WIMP masses below 10 GeV/c2^2 and therefore probe dark matter models to lower cross-sections. In the context of target complementarity, we also explore how one can tune the relative exposures of different target materials to optimize the WIMP discovery potential.Comment: 13 pages, 12 figures, 3 table

    Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems. A simulation study

    Get PDF
    Background: Locoregional hyperthermia is applied to deep-seated tumours in the pelvic region. Two very different heating techniques are often applied: capacitive and radiative heating. In this paper, numerical simulations are applied to compare the performance of both techniques in heating of deep-seated tumours. Methods: Phantom simulations were performed for small (30 × 20 × 50 cm 3 ) and large (45 × 30 × 50 cm 3 ), homogeneous fatless and inhomogeneous fat-muscle, tissue-equivalent phantoms with a central or eccentric target region. Radiative heating was simulated with the 70 MHz AMC-4 system and capacitive heating was simulated at 13.56 MHz. Simulations were performed for small fatless, small (i.e. fat layer typically 3 cm) patients with cervix, prostate, bladder and rectum cancer. Temperature distributions were simulated using constant hyperthermic-level perfusion values with tissue constraints of 44 °C and compared for both heating techniques. Results: For the small homogeneous phantom, similar target heating was predicted with radiative and capacitive heating. For the large homogeneous phantom, most effective target heating was predicted with capacitive heating. For inhomogeneous phantoms, hot spots in the fat layer limit adequate capacitive heating, and simulated target temperatures with radiative heating were 2–4 °C higher. Patient simulations predicted therapeutic target temperatures with capacitive heating for fatless patients, but radiative heating was more robust for all tumour sites and patient sizes, yielding target temperatures 1–3 °C higher than those predicted for capacitive heating. Conclusion: Generally, radiative locoregional heating yields more favourable simulated temperature distributions for deep-seated pelvic tumours, compared with capacitive heating. Therapeutic temperatures are predicted for capacitive heating in patients with (almost) no fat

    The Cosmic Stellar Birth and Death Rates

    Full text link
    The cosmic stellar birth rate can be measured by standard astronomical techniques. It can also be probed via the cosmic stellar death rate, though until recently, this was much less precise. However, recent results based on measured supernova rates, and importantly, also on the attendant diffuse fluxes of neutrinos and gamma rays, have become competitive, and a concordant history of stellar birth and death is emerging. The neutrino flux from all past core-collapse supernovae, while faint, is realistically within reach of detection in Super-Kamiokande, and a useful limit has already been set. I will discuss predictions for this flux, the prospects for neutrino detection, the implications for understanding core-collapse supernovae, and a new limit on the contribution of type-Ia supernovae to the diffuse gamma-ray background.Comment: Accepted for publication in New Astronomy Reviews (invited talk at "Astronomy with Radioactivities V", Clemson Univ., Sept. 2005). 9 pages, 5 figure

    Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies

    Full text link
    We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle Ï•\phi. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion ~10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through Ï•\phi's required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into Ï„\tau's is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.Comment: 11 pages, 4 figures. References added. Final published versio

    Nurses\u27 Alumnae Association Bulletin, September 1958

    Get PDF
    Committee Reports Digest of Alumnae Meetings Graduation Awards - 1957 List of Wrong Addresses Marriages Necrology New Arrivals Physical Advances at Jefferson President\u27s Message School of Nursing Repor

    Angular Correlations of the MeV Cosmic Gamma Ray Background

    Full text link
    The measured cosmic gamma ray background (CGB) spectrum at MeV energies is in reasonable agreement with the predicted contribution from type Ia supernovae (SNIa). But the characteristic features in the SNIa gamma ray spectrum, weakened by integration over source redshifts, are hard to measure, and additionally the contributions from other sources in the MeV range are uncertain, so that the SNIa origin of the MeV CGB remains unproven. Since different CGB sources have different clustering properties and redshift distributions, by combining the CGB spectrum and angular correlation measurements, the contributions to the CGB could be identified and separated. The SNIa CGB large-scale structure follows that of galaxies. Its rms fluctuation at degree scales has a characteristic energy dependence, ranging from ∼1\sim 1% to order of unity and can be measured to several percent precision by proposed future satellites such as the Advanced Compton Telescope. With the identification of the SNIa contribution, the SNIa rate could be measured unambiguously as a function of redshift up to z∼1z \sim 1, by combining both the spectrum and angular correlation measurements, yielding new constraints on the star formation rate to even higher redshifts. Finally, we show that the gamma ray and neutrino backgrounds from supernovae should be closely connected, allowing an important consistency test from the measured data. Identification of the astrophysical contributions to the CGB would allow much greater sensitivity to an isotropic high-redshift CGB contribution arising in extra dimension or dark matter models.Comment: 6 pages, 3 figures. ApJ, (2004), 614, 3
    • …
    corecore