76 research outputs found

    Dislocation networks in helium-4 crystals

    Full text link
    The mechanical behavior of crystals is dominated by dislocation networks, their structure and their interactions with impurities or thermal phonons. However, in classical crystals, networks are usually random with impurities often forming non-equilibrium clusters when their motion freezes at low temperature. Helium provides unique advantages for the study of dislocations: crystals are free of all but isotopic impurities, the concentration of these can be reduced to the ppb level, and the impurities are mobile at all temperatures and therefore remain in equilibrium with the dislocations. We have achieved a comprehensive study of the mechanical response of 4He crystals to a driving strain as a function of temperature, frequency and strain amplitude. The quality of our fits to the complete set of data strongly supports our assumption of string-like vibrating dislocations. It leads to a precise determination of the distribution of dislocation network lengths and to detailed information about the interaction between dislocations and both thermal phonons and 3He impurities. The width of the dissipation peak associated with impurity binding is larger than predicted by a simple Debye model, and much of this broadening is due to the distribution of network lengths.Comment: accepted by Phys. Rev.

    Observation of metastable hcp solid helium

    Full text link
    We have produced and observed metastable solid helium-4 below its melting pressure between 1.1 K and 1.4 K. This is achieved by an intense pressure wave carefully focused inside a crystal of known orientation. An accurate density map of the focal zone is provided by an optical interferometric technique. Depending on the sample, minimum density achieved at focus corresponds to pressures between 2 and 4 bar below the static melting pressure. Beyond, the crystal undergoes an unexpected instability much earlier than the predicted spinodal limit. This opens a novel opportunity to study this quantum crystal in an expanded metastable state and its stability limits.Comment: deuxi\`eme versio

    Direct Domino Synthesis of Azido-Dienoic Acids: Potential Linker Units

    No full text
    We report an atom-economical domino synthesis of functionalized and stereodefined dienes. This method hinges on an allylic alkylation–electrocyclic ring-opening sequence and allows direct access to doubly vinylogous azido-dienoic acids bearing challenging substitution patterns. This class of compounds re­presents useful linkers in chemical biology by virtue of the ortho­gonality between the azido and carboxylic acid moieties

    Direct observation of homogeneous cavitation in nanopores

    Full text link
    We report on the evaporation of hexane from porous alumina and silicon membranes. These membranes contain billions of independent nanopores tailored to an ink-bottle shape, where a cavity several tens of nanometers in diameter is separated from the bulk vapor by a constriction. For alumina membranes with narrow enough constrictions, we demonstrate that cavity evaporation proceeds by cavitation. Measurements of the pressure dependence of the cavitation rate follow the predictions of the bulk, homogeneous, classical nucleation theory, definitively establishing the relevance of homogeneous cavitation as an evaporation mechanism in mesoporous materials. Our results imply that porous alumina membranes are a promising new system to study liquids in a deeply metastable state.Comment: 14 pages , 4 figures. Source files also contain Supplemental Material (Doebele_HomogeneousCavitationMembranes_SM.pdf

    An Atom-Economical and Stereoselective Domino Synthesis of Functionalised Dienes

    No full text
    Open sesame: A direct synthesis of functionalised and stereodefined dienes, relying on a domino allylic alkylation/electrocyclic ring-opening sequence, is reported. This method allows concise access to doubly vinylogous esters. A further systematic study of ring-opening rates of carbon-substituted cyclobutenes allowed the design of substrates amenable to sequential pericyclic reactions
    corecore