255 research outputs found

    Excited-state Forces within a First-principles Green's Function Formalism

    Full text link
    We present a new first-principles formalism for calculating forces for optically excited electronic states using the interacting Green's function approach with the GW-Bethe Salpeter Equation method. This advance allows for efficient computation of gradients of the excited-state Born-Oppenheimer energy, allowing for the study of relaxation, molecular dynamics, and photoluminescence of excited states. The approach is tested on photoexcited carbon dioxide and ammonia molecules, and the calculations accurately describe the excitation energies and photoinduced structural deformations.Comment: 2 figures and 2 table

    A First-Principles Study of the Electronic Reconstructions of LaAlO3/SrTiO3 Heterointerfaces and Their Variants

    Full text link
    We present a first-principles study of the electronic structures and properties of ideal (atomically sharp) LaAlO3/SrTiO3 (001) heterointerfaces and their variants such as a new class of quantum well systems. We demonstrate the insulating-to-metallic transition as a function of the LaAlO3 film thickness in these systems. After the phase transition, we find that conduction electrons are bound to the n-type interface while holes diffuse away from the p-type interface, and we explain this asymmetry in terms of a large hopping matrix element that is unique to the n-type interface. We build a tight-binding model based on these hopping matrix elements to illustrate how the conduction electron gas is bound to the n-type interface. Based on the `polar catastrophe' mechanism, we propose a new class of quantum wells at which we can manually control the spatial extent of the conduction electron gas. In addition, we develop a continuous model to unify the LaAlO3/SrTiO3 interfaces and quantum wells and predict the thickness dependence of sheet carrier densities of these systems. Finally, we study the external field effect on both LaAlO3/SrTiO3 interfaces and quantum well systems. Our systematic study of the electronic reconstruction of LaAlO3/SrTiO3 interfaces may serve as a guide to engineering transition metal oxide heterointerfaces.Comment: 50 pages, 18 figures and 4 table

    Bipolar rechargeable lithium battery for high power applications

    Get PDF
    Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly

    Density Contrast-Peculiar Velocity Relation in the Newtonian Gauge

    Full text link
    In general relativistic framework of the large scale structure formation theory in the universe, we investigate the relation between density contrast and peculiar velocity in the Newtonian gauge. According to the gauge-invariant property of the energy-momentum tensor in the Newtonian gauge, we consider the perturbation of velocity in the energy-momentum tensor behaves as the Newtonian peculiar velocity. It is shown that in the relativistic framework, the relation between peculiar velocity and density contrast has an extra correction term with respect to the Newtonian Peebles formula which in small scales, can be ignorable . The relativistic correction of peculiar velocity for the structures with the extension of few hundred mega parsec is about few percent which is smaller than the accuracy of the recent observations for measuring peculiar velocity. The peculiar velocity in the general relativistic framework also changes the contribution of Doppler effect on the anisotropy of CMB.Comment: 9 pages, 1 figure, accepted in Int. J. Mod. Phys

    Growth and interfacial properties of epitaxial oxides on semiconductors: ab initio insights

    Get PDF
    Crystalline metal oxides display a large number of physical functionalities such as ferroelectricity, magnetism, superconductivity, and Mott transitions. High quality heterostructures involving metal oxides and workhorse semiconductors such as silicon have the potential to open new directions in electronic device design that harness these degrees of freedom for computation or information storage. This review describes how first-principles theoretical modeling has informed current understanding of the growth mechanisms and resulting interfacial structures of crystalline, coherent, and epitaxial metal oxide thin films on semiconductors. Two overarching themes in this general area are addressed. First, the initial steps of oxide growth involve careful preparation of the semiconductor surface to guard against amorphous oxide formation and to create an ordered template for epitaxy. The methods by which this is achieved are reviewed, and possibilities for improving present processes to enable the epitaxial growth of a wider set of oxides are discussed. Second, once a heterointerface is created, the precise interfacial chemical composition and atomic structure is difficult to determine unambiguously from experiment or theory alone. The current understanding of the structure and properties of complex oxide/semiconductor heterostructures is reviewed, and the main challenges to prediction—namely, (i) are these heterostructures in thermodynamic equilibrium or kinetically trapped, and (ii) how do the interfaces modify or couple to the degrees of freedom in the oxide?—are explored in detail for two metal oxide thin films on silicon. Finally, an outlook of where theoretical efforts in this field may be headed in the near future is provided.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Grant DMR-1119826)National Science Foundation (U.S.). (Yale University. Biomedical High Performance Computing Center. Grant CNS 08-21132

    Chaotic Inflation with Time-Variable Space Dimensions

    Get PDF
    Assuming the space dimension is not constant but decreases during the expansion of the Universe, we study chaotic inflation with the potential m2Ď•2/2m^2\phi^2/2. Our investigations are based on a model Universe with variable space dimensions. We write down field equations in the slow-roll approximation, and define slow-roll parameters by assuming the number of space dimensions decreases continuously as the Universe expands. The dynamical character of the space dimension shifts the initial and final value of the inflaton field to larger values. We obtain an upper limit for the space dimension at the Planck length. This result is in agreement with previous works for the effective time variation of the Newtonian gravitational constant in a model Universe with variable space dimensions.Comment: 19 pages, To be published in Int.J.Mod.Phys.D. Minor changes to match accepted versio

    Long range correlation in cosmic microwave background radiation

    Full text link
    We investigate the statistical anisotropy and Gaussianity of temperature fluctuations of Cosmic Microwave Background radiation (CMB) data from {\it Wilkinson Microwave Anisotropy Probe} survey, using the multifractal detrended fluctuation analysis, rescaled range and scaled windowed variance methods. The multifractal detrended fluctuation analysis shows that CMB fluctuations has a long range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of temperature fluctuation of CMB is mainly due to the long-range correlations and the map is consistent with a Gaussian distribution.Comment: 10 pages, 7 figures, V2: Added comments, references and major correction

    \u3cem\u3eIn situ\u3c/em\u3e pressure study of Rb\u3csub\u3e4\u3c/sub\u3eC\u3csub\u3e60\u3c/sub\u3e insulator to metal transition by Compton scattering

    Get PDF
    Compton scattering has been shown to be a powerful tool for studying the ground state electronic density in real materials. Using synchrotron radiation, we have studied pressure effects on Rb4C60 by measuring the Compton profiles below and above the insulator to metal transition at 0.8 GPa. The experimental results are compared with the corresponding calculated results, obtained from new ab initio energy band structure calculations. These results allow us to quantitatively evaluate contributions to the Compton profiles resulting from the contraction of the unit cell as well as from the contraction of the C60 molecule itself. In this paper, we point out an unexpected contraction of the volume of the C60 molecule, leading to a major effect on the electronic density of the Rb4C60 compound
    • …
    corecore