117 research outputs found

    Serum glycoprotein synthesis after partial hepatectomy in the rat

    Full text link

    Biosynthesis and oligosaccharide structure of human CD8 glycoprotein expressed in a rat epithelial cell line.

    Get PDF
    The biosynthesis, post-translational modifications, and oligosaccharide structure of human CD8 glycoprotein have been studied in transfected rat epithelial cells. These cells synthesized and expressed on the plasma membrane high amounts of CD8 in a homodimeric form stabilized by a disulfide bridge. Three different CD8 forms were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis after metabolic labeling and immunoprecipitation: a newly synthesized, unglycosylated 27-kDa (CD8u), a palmitylated and initially O-glycosylated 29-kDa (CD8i), and the mature, terminally glycosylated 32-34-kDa doublet (CD8m). CD8i is a transient intermediate form between CD8u and CD8m: characterization of carbohydrate moiety of [3H]glucosamine-labeled CD8i showed that it comprises for the vast majority non-elongated O-linked GalNAc closely spaced on the peptide backbone. Structural analysis of oligosaccharides released by mild alkaline borohydride treatment from the [3H]glucosamine-labeled CD8 34-kDa form showed that the neutral tetrasaccharide Gal beta 1,4GlcNAc beta 1,6(Gal beta 1,3)GalNAcOH, and an homologous monosialylated pentasaccharide, predominate; the disialylated NeuAc2,3Gal beta 1,3(NeuAc alpha 2,6) GalNAcOH tetrasaccharide appeared to be poorly present. In the CD8 32-kDa form the neutral tetrasaccharide was by far the prominent O-linked chain, and no disialyloligosaccharides were identified. These results indicate that the maturation of CD8 glycoprotein in transfected rat epithelial cells results in the formation of branched O-linked oligosaccharides and that a higher degree of sialylation is responsible for the production of the heavier 34-kDa form

    Pyelonephritis in slaughter pigs and sows: Morphological characterization and aspects of pathogenesis and aetiology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyelonephritis is a serious disease in pig production that needs to be further studied. The purpose of this study was to describe the morphology, investigate the pathogenesis, and evaluate the aetiological role of <it>Escherichia coli </it>in pyelonephritis in slaughtered pigs by concurrent bacteriological, gross and histopathological examinations.</p> <p>Methods</p> <p>From Danish abattoirs, kidneys and corresponding lymph nodes from 22 slaughtered finishing pigs and 26 slaughtered sows with pyelonephritis were collected and evaluated by bacteriology and pathology. Based on gross lesions, each kidney (lesion) was grouped as acute, chronic, chronic active, or normal and their histological inflammatory stage was determined as normal (0), acute (1), sub-acute (2), chronic active (3), or chronic (4). Immunohistochemical identification of neutrophils, macrophages, T-lymphocytes, B-lymphocytes, plasma cells, <it>E. coli </it>and Tamm-Horsfall protein (THP) in renal sections was performed. The number of <it>E. coli </it>and the proportion of immunohistochemically visualized leukocytes out of the total number of infiltrating leukocytes were scored semi-quantitatively.</p> <p>Results</p> <p>Lesions in finishing pigs and sows were similar. Macroscopically, multiple unevenly distributed foci of inflammation mostly affecting the renal poles were observed. Histologically, tubulointerstitial infiltration with neutrophils and mononuclear cells and tubular destruction was the main findings. The significant highest scores of L1 antigen<sup>+ </sup>neutrophils were in inflammatory stage 1 while the significant highest scores of CD79αcy<sup>+ </sup>B-lymphocytes, IgG<sup>+ </sup>and IgA<sup>+ </sup>plasma cells were in stage 3 or 4. Neutrophils were the dominant leukocytes in stage 1 while CD3ε<sup>+ </sup>T-lymphocytes dominated in stage 2, 3 and 4. Interstitially THP was seen in 82% and 98% of kidneys with pyelonephritis from finishing pigs and sows, respectively. <it>E. coli </it>was demonstrated in monoculture and/or identified by immunohistochemistry in relation to inflammation in four kidneys from finishing pigs and in 34 kidneys from sows.</p> <p>Conclusions</p> <p><it>E. coli </it>played a significant role in the aetiology of pyelonephritis. Neutrophils were involved in the first line of defence. CD3ε<sup>+ </sup>T-lymphocytes were involved in both the acute and chronic inflammatory response while a humoral immune response was most pronounced in later inflammatory stages. The observed renal lesions correspond with an ascending bacterial infection with presence of intra-renal reflux.</p

    The pancreatic zymogen granule membrane protein, GP2, binds Escherichia coli type 1 Fimbriae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GP2 is the major membrane protein present in the pancreatic zymogen granule, and is cleaved and released into the pancreatic duct along with exocrine secretions. The function of GP2 is unknown. GP2's amino acid sequence is most similar to that of uromodulin, which is secreted by the kidney. Recent studies have demonstrated uromodulin binding to bacterial Type 1 fimbria. The fimbriae serve as adhesins to host receptors. The present study examines whether GP2 also shares similar binding properties to bacteria with Type 1 fimbria. Commensal and pathogenic bacteria, including E. coli and Salmonella, express type 1 fimbria.</p> <p>Methods</p> <p>An <it>in vitro </it>binding assay was used to assay the binding of recombinant GP2 to defined strains of <it>E. coli </it>that differ in their expression of Type 1 fimbria or its subunit protein, FimH. Studies were also performed to determine whether GP2 binding is dependent on the presence of mannose residues, which is a known determinant for FimH binding.</p> <p>Results</p> <p>GP2 binds <it>E. coli </it>that express Type 1 fimbria. Binding is dependent on GP2 glycosylation, and specifically the presence of mannose residues.</p> <p>Conclusion</p> <p>GP2 binds to Type 1 fimbria, a bacterial adhesin that is commonly expressed by members of the <it>Enterobacteriacae </it>family.</p

    SDS-PAGE-Based Quantitative Assay for Screening of Kidney Stone Disease

    Get PDF
    Kidney stone disease is a common health problem in industrialised nations. We developed a SDS-PAGE-based method to quantify Tamm Horsfall glycoprotein (THP) for screening of kidney stone disease. Urinary proteins were extracted by using ammonium sulphate precipitation at 0.27 g salt/mL urine. The resulted pellet was dissolved in TSE buffer. Ten microliters of the urinary proteins extract was loaded and separated on 10% SDS-PAGE under reducing condition. THP migrated as single band in SDS-PAGE. The assay reproducibility and repeatability were 4.8% CV and 2.6% CV, respectively. A total of 117 healthy subjects and 58 stone patients were tested using this assay, and a distinct cut-off (P < 0.05) at 5.6 μg/mL THP concentration was used to distinguish stone patients from healthy subjects. The sensitivity and specificity of the method were 92.3% and 83.3%, respectively

    Isolation of a Glucosamine Binding Leguminous Lectin with Mitogenic Activity towards Splenocytes and Anti-Proliferative Activity towards Tumor Cells

    Get PDF
    A dimeric 64-kDa glucosamine-specific lectin was purified from seeds of Phaseolus vulgaris cv. “brown kidney bean.” The simple 2-step purification protocol involved affinity chromatography on Affi-gel blue gel and gel filtration by FPLC on Superdex 75. The lectin was absorbed on Affi-gel blue gel and desorbed using 1M NaCl in the starting buffer. Gel filtration on Superdex 75 yielded a major absorbance peak that gave a single 32-kDa band in SDS-PAGE. Hemagglutinating activity was completely preserved when the ambient temperature was in the range of 20°C–60°C. However, drastic reduction of the activity occurred at temperatures above 65°C. Full hemagglutinating activity of the lectin was observed at an ambient pH of 3 to 12. About 50% activity remained at pH 0–2, and only residual activity was observed at pH 13–14. Hemagglutinating activity of the lectin was inhibited by glucosamine. The brown kidney bean lectin elicited maximum mitogenic activity toward murine splenocytes at 2.5 µM. The mitogenic activity was nearly completely eliminated in the presence of 250 mM glucosamine. The lectin also increased mRNA expression of the cytokines IL-2, TNF-α and IFN-γ. The lectin exhibited antiproliferative activity toward human breast cancer (MCF7) cells, hepatoma (HepG2) cells and nasopharyngeal carcinoma (CNE1 and CNE2) cells with IC50 of 5.12 µM, 32.85 µM, 3.12 µM and 40.12 µM respectively after treatment for 24 hours. Flow cytometry with Annexin V and propidum iodide staining indicated apoptosis of MCF7 cells. Hoechst 33342 staining also indicated formation of apoptotic bodies in MCF7 cells after exposure to brown kidney bean lectin. Western blotting revealed that the lectin-induced apoptosis involved ER stress and unfolded protein response

    Intervening with Urinary Tract Infections Using Anti-Adhesives Based on the Crystal Structure of the FimH–Oligomannose-3 Complex

    Get PDF
    Escherichia coli strains adhere to the normally sterile human uroepithelium using type 1 pili, that are long, hairy surface organelles exposing a mannose-binding FimH adhesin at the tip. A small percentage of adhered bacteria can successfully invade bladder cells, presumably via pathways mediated by the high-mannosylated uroplakin-Ia and alpha3beta1 integrins found throughout the uroepithelium. Invaded bacteria replicate and mature into dense, biofilm-like inclusions in preparation of fluxing and of infection of neighbouring cells, being the major cause of the troublesome recurrent urinary tract infections.We demonstrate that alpha-D-mannose based inhibitors of FimH not only block bacterial adhesion on uroepithelial cells but also antagonize invasion and biofilm formation. Heptyl alpha-D-mannose prevents binding of type 1-piliated E. coli to the human bladder cell line 5637 and reduces both adhesion and invasion of the UTI89 cystitis isolate instilled in mouse bladder via catheterization. Heptyl alpha-D-mannose also specifically inhibited biofilm formation at micromolar concentrations. The structural basis of the great inhibitory potential of alkyl and aryl alpha-D-mannosides was elucidated in the crystal structure of the FimH receptor-binding domain in complex with oligomannose-3. FimH interacts with Man alpha1,3Man beta1,4GlcNAc beta1,4GlcNAc in an extended binding site. The interactions along the alpha1,3 glycosidic bond and the first beta1,4 linkage to the chitobiose unit are conserved with those of FimH with butyl alpha-D-mannose. The strong stacking of the central mannose with the aromatic ring of Tyr48 is congruent with the high affinity found for synthetic inhibitors in which this mannose is substituted for by an aromatic group.The potential of ligand-based design of antagonists of urinary tract infections is ruled by the structural mimicry of natural epitopes and extends into blocking of bacterial invasion, intracellular growth and capacity to fluxing and of recurrence of the infection
    corecore