660 research outputs found

    New resonance parameters for the stable tungsten isotopes from thermal to 1 keV

    Get PDF
    Neutron resonance parameters of the 182,183,184,186W isotopes were obtained by a resonance shape analysis of experimental data measured at the time-of-flight facility GELINA using the REFIT code. In this document the analysis procedures of capture and transmission data are described. The deduced resonance parameters have been adopted in the new release of the Joint Evaluated Fusion and Fission file, i.e. JEFF-3.2, maintained by the Nuclear Energy Agency of the OECD.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Fostering European Collaborations: EUFRAT and work done at the accelerator facilities of JRC-IRMM

    Get PDF
    The European Commission via the General Directorate RTD in its different Framework Programs supported collaborations of member state institutions dealing with nuclear data. The projects EFNUDAT, ERINDA, CHANDA and EUFRAT all have in common Transnational Access Activities (TAA) to partner institutions. Within the past 10 years the collaborations have grown and in CHANDA now 35 partners are involved of which 16 offer TAA to their facilities. Since June 2014 JRC-IRMM, one of the driving forces behind the TAA, launched its own TAA project EUFRAT to foster collaborations with member states institutions. The calls for proposals are open ended with a deadline twice a year. A Project Advisory Committee discusses the proposals and decides on about approval. Financial support is given to approved proposals for two scientists. So far two calls have been evaluated with a request for access totalling more than 5000 h. Examples of proposals at the accelerator facilities at the JRC-IRMM are presented showing the multitude of possibilities using the nuclear facilities at the JRC-IRMM

    Neutron transmission and capture of 241Am

    Get PDF
    A set of neutron transmission and capture experiments based on the Time Of Flight (TOF) technique, were performed in order to determine the 241Am capture cross section in the energy range from 0.01 eV to 1 keV. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM) served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the americium sample, while a Li-glass detector was used in the transmission setup. Results from the capture and transmission data acquired are consistent with each other, but appear to be inconsistent with the evaluated data files. Resonance parameters have been derived for the data up to the energy of 100 eV.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos

    Full text link
    Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given

    Application of LaBr3 detector for neutron resonance densitometry

    Get PDF
    A method to determine the amount of nuclear materials in melted fuel resulting from a nuclear accident such as the one occurred at the Fukushima Daiichi nuclear power plants has not yet been established. The problem is complex due to the expected presence of 10B and other strong neutron absorbing impurities. For this reason, neutron resonance densitometry, combining neutron resonance transmission analysis and neutron capture analysis, is proposed and a feasibility study has been defined. In this contribution a method to account for the presence of 10B is presented and investigated. The study includes GEANT4 simulations to study the performance of a new well type gamma-ray detector based on LaBr3 scintillators. In the design of the detector the main emphasis was on the capability to separate the full energy peak corresponding to the 478-keV gamma ray resulting from the 10B(n,αγ) reaction from the contribution of the 662-keV gamma ray due to the decay of 137Cs. In addition, experiments have been carried out at the time-of-flight facility GELINA of the EC-JRC-IRMM to test the capabilities of a LaBr3 detector for NRCA applications, in particular to determine impurities present in the melted fuel. A neutron resonance capture gamma-ray experiment with a natSe sample was performed using a LaBr3 scintillator in parallel with a Ge-detector. The results of these measurements demonstrate that a LaBr3 detector is suitable for NRCA as a part of neutron resonance densitometry.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    The 13

    Full text link
    At nuclear fusion reactors, CVD diamond detectors are considered an advantageous solution for neutron flux monitoring. For such applications the knowledge of the cross section of neutron-induced nuclear reactions on natural carbon are of high importance. Especially the (n,α0) reactions, yielding the highest energy reaction products, are of relevance as they can be clearly distinguished in the spectrum. The 13C(n,α0)10Be cross section was measured relative to 12C(n,α0)9Be at the Van de Graaff facility of EC-JRC Geel, Belgium, at 14.3 MeV and 17.0 MeV neutron energies. The measurement was performed with an sCVD (single-crystal Chemical Vapor Deposition) diamond detector, where the detector material acted simultaneously as sample and as sensor. A novel data analysis technique, based on pulse-shape discrimination, allowed an efficient reduction of background events. The results of the measurement are presented and compared to previously published values for this cross-section

    Proposal of neutron resonance densitometry for particle like debris of melted fuel using NRTA and NRCA

    Get PDF
    Neutron resonance densitometry (NRD) has been proposed to quantify nuclear materials in particle-like debris of melted fuel formed in a severe accident of nuclear reactors such as the Fukushima Daiichi nuclear power plants. NRD is a method that combines NRTA (neutron resonance transmission analysis) and NRCA (neutron resonance capture analysis) using a pulsed neutron generator and the TOF (time of flight) technique. NRTA is used to quantify the amount of Pu and U isotopes. NRCA is used to identify matrix materials, such as B and Fe, which are present in the melted fuel. A special gamma-ray spectrometer has been designed to apply NRCA in the presence of highly radioactive materials. The applicability of the NRD method has been studied using Monte Carlo simulations and neutron TOF experiments at the GELINA facility of the EC-JRC-IRMM. We conclude that NRD has a potential to determine the quantities of Pu and U isotopes in particle-like debris of melted fuel with counting statistics uncertainties less than 1%, even in the presence of 2.5 w% natB and 9 w% 56Fe.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Measurements of the capture cross sections of natural silver in the resonance range with the time of flight technique

    Full text link
    Neutron capture cross section measurements have been performed at the time-of-flight facility GELINA of the EC-JRC-Geel. Prompt gamma rays, originating from a natural silver sample, were detected by a pair of C6D6 liquid scintillation detectors. The total energy detection principle in combination with the pulse height weighting technique has been used. In this contribution the experimental details together with the data reduction process are described. In addition, first results of calculations with REFIT are presented to verify the quality of recommended cross section data in the resolved resonance region

    SFCOMPO 2.0 – A relational database of spent fuel isotopic measurements, reactor operational histories, and design data

    Full text link
    SFCOMPO-2.0 is a database of experimental isotopic concentrations measured in destructive radiochemical analysis of spent nuclear fuel (SNF) samples. The database includes corresponding design description of the fuel rods and assemblies, relevant operating conditions and characteristics of the host reactors necessary for modelling and simulation. Aimed at establishing a thorough, reliable, and publicly available resource for code and data validation of safety-related applications, SFCOMPO-2.0 is developed and maintained by the OECD Nuclear Energy Agency (NEA). The SFCOMPO-2.0 database is a Java application which is downloadable from the NEA website
    • …
    corecore