59 research outputs found

    No Elevated Plasma Catecholamine Levels during Sleep in Newly Diagnosed, Untreated Hypertensives

    Get PDF
    The sympatho-adrenergic system is highly involved in regulating sleep, wake and arousal states, and abnormalities in this system are regarded as a key factor in the development and progression of arterial hypertension. While hypertension is associated with a hyperadrenergic state during wakefulness, the effect of hypertension on plasma-catecholamine levels during sleep is not yet known. Twelve young participants with newly diagnosed, untreated hypertension and twelve healthy controls slept for 7 hours in the sleep laboratory. Before and after sleep, subjects rested in a supine position for 3-h periods of wakefulness. We sampled blood at a fast rate (1/10 min) and monitored blood pressure and heart rate continuously. We show that plasma NE and E levels did not differ between hypertensives and normotensive during sleep as well as before and after sleep. Blood pressure was higher in hypertensives, reaching the largest group difference in the morning after sleep. Unlike in the normotensives, in the hypertensive participants the morning rise in blood pressure did not correlate with the rise in catecholamine levels at awakening. Our results suggest that hypertension in its early stages is not associated with a strong hyperadrenergic state during sleep. In showing a diminished control of blood pressure through sympatho-adrenergic signals in hypertensive participants, our data point towards a possible involvement of dysfunctional sleep-related blood pressure regulation in the development of hypertension

    Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges

    Get PDF
    Potential applications of tissue engineering in regenerative medicine range from structural tissues to organs with complex function. This review focuses on the engineering of heart valve tissue, a goal which involves a unique combination of biological, engineering, and technological hurdles. We emphasize basic concepts, approaches and methods, progress made, and remaining challenges. To provide a framework for understanding the enabling scientific principles, we first examine the elements and features of normal heart valve functional structure, biomechanics, development, maturation, remodeling, and response to injury. Following a discussion of the fundamental principles of tissue engineering applicable to heart valves, we examine three approaches to achieving the goal of an engineered tissue heart valve: (1) cell seeding of biodegradable synthetic scaffolds, (2) cell seeding of processed tissue scaffolds, and (3) in-vivo repopulation by circulating endogenous cells of implanted substrates without prior in-vitro cell seeding. Lastly, we analyze challenges to the field and suggest future directions for both preclinical and translational (clinical) studies that will be needed to address key regulatory issues for safety and efficacy of the application of tissue engineering and regenerative approaches to heart valves. Although modest progress has been made toward the goal of a clinically useful tissue engineered heart valve, further success and ultimate human benefit will be dependent upon advances in biodegradable polymers and other scaffolds, cellular manipulation, strategies for rebuilding the extracellular matrix, and techniques to characterize and potentially non-invasively assess the speed and quality of tissue healing and remodeling

    Antibiotic therapy in Shiga toxin producing Escherichia coli infection and colonization

    No full text
    The post diarrheal hemolytic uremic syndrome (HUS) is a major complication of enteric infections with Shiga toxin producing E. coli (STEC). According to the present recommendations, antibiotic therapy of acute bloody diarrhea caused by STEC is generally discouraged. These recommendations are based on historically conflicting results describing the potential induction of HUS by antibiotic treatment during the early phase of infection with enterohemorrhagic E. coli O157 whereas no guidelines are available for the use of antibiotics in cases of already fully established HUS or in asymptomatic long term STEC carriers. In 2011, a large outbreak of hemorrhagic colitis complicated by HUS occurred in northern Germany caused by a STEC strain of serotype O104:H4 harbouring both a phage encoding Stx 2 as well as a plasmid mediated enteroaggregative phenotype. The majority of infections were observed in adults, complicated by the highest number of HUS cases ever encountered. Due to different newly introduced therapeutic strategies (e.g. complement blockade) antibiotic therapy was used in many patients once HUS was established. The outbreak therefore provided important new insights for the understanding of antibiotic therapy of STEC associated HUS in adults and for decolonization of long term STEC carriers. This review highlights new aspects concerning use of antibiotics in STEC infection and colonization

    Intranasal orexin A modulates sympathetic vascular tone - a pilot study in healthy male humans.

    No full text
    INTRODUCTION: Previous research suggests that the neuropeptide orexin A contributes to sympathetic blood pressure (BP) control inasmuch as hypothalamic injection of orexin A increases sympathetic vasomotor tone and arterial BP in rodents. In humans with narcolepsy, a disorder associated with loss of orexin-producing neurons, vasoconstrictive muscle sympathetic nerve activity (MSNA) is reduced. Since intranasally administered oligopeptides like orexin are known to modulate brain function, we investigated the effect of intranasal orexin A on vascular sympathetic baroreflex function in healthy humans. METHODS: In a balanced, double-blind cross-over study, orexin A (500 nmol) and placebo, respectively, were intranasally administered to 10 lean healthy males (age, 25.8±4.6 years). MSNA was assessed microneurographically before and 30-45 minutes after either substance administration. Additionally, baroreflex was challenged via graded infusions of vasoactive drugs before and after substance administration. Baroreflex function was defined as the correlation of BP with MSNA and heart rate. RESULTS: Intranasal orexin A compared to placebo induced a significant increase in resting MSNA from prior to post administration (Δ-burst rate, orexin A vs. placebo: +5.8±0.8 vs. +2.1±0.6; p=0.007; total activity (169±11.5% vs. 115±5.0%; p=0.002). BP, heart rate and sympathovagal balance to the heart, as represented by HRV, as well as baroreflex sensitivity during the vasoactive challenge were not altered. CONCLUSION: Intranasally administered orexin A acutely induced vasoconstrictory sympathoactivation in healthy male humans. This result suggests that orexin A mediates upward resetting of the vascular baroreflex setpoint at centers superordinate to the mere baroreflex-feedback-loop

    Differential Effects of Angiotensin-II Compared to Phenylephrine on Arterial Stiffness and Hemodynamics: A Placebo-Controlled Study in Healthy Humans

    No full text
    The α1-adrenoceptor agonist phenylephrine (PE) and Angiotensin II (Ang II) are both potent vasoconstrictors at peripheral resistance arteries. PE has pure vasoconstrictive properties. Ang II, additionally, modulates central nervous blood pressure (BP) control via sympathetic baroreflex resetting. However, it is unknown whether Ang II vs. PE mediated vasoconstriction at equipressor dose uniformly or specifically modifies arterial stiffness. We conducted a three-arm randomized placebo-controlled cross-over trial in 30 healthy volunteers (15 female) investigating the effects of Ang II compared to PE at equal systolic pressor dose on pulse wave velocity (PWV), pulse wave reflection (augmentation index normalized to heart rate 75/min, AIx) and non-invasive hemodynamics by Mobil-O-Graph™ and circulating core markers of endothelial (dys-)function. PE but not Ang II-mediated hypertension induced a strong reflex-decrease in cardiac output. Increases in PWV, AIx, total peripheral resistance and pulse pressure, in contrast, were stronger during PE compared to Ang II at equal mean aortic BP. This was accompanied by minute changes in circulating markers of endothelial function. Moreover, we observed differential hemodynamic changes after stopping either vasoactive infusion. Ang II- and PE-mediated BP increase specifically modifies arterial stiffness and hemodynamics with aftereffects lasting beyond mere vasoconstriction. This appears attributable in part to different interactions with central nervous BP control including modified baroreflex function

    Der Synergie-Schreibversuch ? Eine neue Kleinhirnpr�fung

    No full text
    corecore