1,377 research outputs found
Specific Heat of the Ca-Intercalated Graphite Superconductor CaC
The superconducting state of Ca-intercalated graphite CaC6 has been
investigated by specific heat measurements. The characteristic anomaly at the
superconducting transition (Tc = 11.4 K) indicates clearly the bulk nature of
the superconductivity. The temperature and magnetic field dependence of the
electronic specific heat are consistent with a fully-gapped superconducting
order parameter. The estimated electron-phonon coupling constant is lambda =
0.60 - 0.74 suggesting that the relatively high Tc of CaC6 can be explained
within the weak-coupling BCS approach.Comment: 4 pages, 4 figs, submitted to Phys. Rev. Let
Superconductivity in Heavy Alkaline-Earths Intercalated Graphites
We report the discovery of superconductivity below 1.65(6) K in
Sr-intercalated graphite SrC6, by susceptibility and specific heat (Cp)
measurements. In comparison with CaC6, we found that the anisotropy of the
upper critical fields for SrC6 is much reduced. The Cp anomaly at Tc is smaller
than the BCS prediction indicating an anisotropic superconducting gap for SrC6
similar to CaC6. The significantly lower Tc of SrC6 as compared to CaC6 can be
understood in terms of "negative" pressure effects, which decreases the
electron-phonon coupling for both in-plane intercalant and the out-of-plane C
phonon modes. We observed no superconductivity for BaC6 down to 0.3 K.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Effect of Pressure on Superconducting Ca-intercalated Graphite CaC
The pressure effect on the superconducting transition temperature () of
the newly-discovered Ca-intercalated graphite compound CaC has been
investigated up to 16 kbar. is found to increase under pressure
with a large relative ratio / of +0.4 %/kbar. Using
first-principles calculations, we show that the large and positive effect of
pressure on can be explained in the scope of electron-phonon theory due
to the presence of a soft phonon branch associated to in-plane vibrations of Ca
atoms. Implications of the present findings on the current debate about the
superconducting mechanism in graphite intercalation compounds are discussed.Comment: 6 pages, 5 figs, final PRB versio
The spatial and compositional evolution of the Jurassic Ghorveh-Dehgolan plutons of the Zagros Orogen, Iran: SHRIMP zircon U-Pb and Sr and Nd isotope evidence
The Ghorveh-Dehgolan plutons of the northern Sanandaj-Sirjan Zone, Zagros Orogen, comprise seven composite intrusive bodies that were generated during northeastward subduction of Neotethys beneath the Iranian sector of the Eurasian plate. Zircon U-Pb SHRIMP dating reveals that the magmatic activity spanned from ~160 to ~140Ma. It started with intrusion of arc-related calc-alkaline mafic to intermediate rocks closely followed by felsic I-type granitoids. This magmatism was post-dated by felsic alkaline A-type granites. In addition to compositional changes over time, the plutons forming the arc young towards the southwest: the north Ghorveh batholith (161±4Ma) and Shanevareh (160±2Ma); Qalaylan (159±3Ma); then central Ghorveh, Galali and Saranjianeh (151±0.2Ma to 148±1Ma); and, lastly, the south Ghorveh batholith (147±3Ma) and Bolbanabad-Havarpan (144±1Ma). Whatever the process driving the changes, be it arc- or ridge-collision with the subducting system, slab roll-back, slab breakoff, subduction initiation transference, etc., the progression from I-type to A-type magmatism appears to mark a significant change from a collisional to an extensional setting in the region in the Late Jurassic. Geochemical and isotopic characteristics of the Ghorveh-Dehgolan plutons indicate that Arabian-Nubian-like crust was an important component of the magmatic sources
- …