5,932 research outputs found

    Auxiliary field formalism for dilute fermionic atom gases with tunable interactions

    Full text link
    We develop the auxiliary field formalism corresponding to a dilute system of spin-1/2 fermions. This theory represents the Fermi counterpart of the BEC theory developed recently by F. Cooper et al. [Phys. Rev. Lett. 105, 240402 (2010)] to describe a dilute gas of Bose particles. Assuming tunable interactions, this formalism is appropriate for the study of the crossover from the regime of Bardeen-Cooper-Schriffer (BCS) pairing to the regime of Bose-Einstein condensation (BEC) in ultracold fermionic atom gases. We show that when applied to the Fermi case at zero temperature, the leading-order auxiliary field (LOAF) approximation gives the same equations as those obtained in the standard BCS variational picture. At finite temperature, LOAF leads to the theory discussed by by Sa de Melo, Randeria, and Engelbrecht [Phys. Rev. Lett. 71, 3202(1993); Phys. Rev. B 55, 15153(1997)]. As such, LOAF provides a unified framework to study the interacting Fermi gas. The mean-field results discussed here can be systematically improved upon by calculating the one-particle irreducible (1-PI) action corrections, order by order.Comment: 12 pages, 5 figure

    Multi-Lepton Collider Signatures of Heavy Dirac and Majorana Neutrinos

    Full text link
    We discuss the possibility of observing multi-lepton signals at the Large Hadron Collider (LHC) from the production and decay of heavy Standard Model (SM) singlet neutrinos added in extensions of SM to explain the observed light neutrino masses by seesaw mechanism. In particular, we analyze two `smoking gun' signals depending on the Dirac or Majorana nature of the heavy neutrino: (i) for Majorana case, the same-sign di-lepton signal which can be used as a probe of lepton-number violation, and (ii) for Dirac case, the tri-lepton signal which conserves lepton number but may violate lepton flavor. Within a minimal Left-Right symmetric framework in which these additional neutrino states arise naturally, we find that in both cases, the signals can be identified with virtually no background beyond a TeV, and the heavy gauge boson W_R can be discovered in this process. This analysis also provides a direct way to probe the nature of seesaw physics involving the SM singlets at TeV scale, and in particular, to distinguish type-I seesaw with purely Majorana heavy neutrinos from inverse seesaw with pseudo-Dirac counterparts.Comment: 19 pages, 7 figures; typo in eq. 5 fixed; matches published versio

    Passenger transmission and productiveness of transit lines with high loads

    Get PDF
    Deterministic transit capacity analysis applies to planning, design and operational management of urban transit systems. The Transit Capacity and Quality of Service Manual (1) and Vuchic (2, 3) enable transit performance to be quantified and assessed using transit capacity and productive capacity. This paper further defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures the transit task performed over distance. Passenger transmission (p-km/h) captures the passenger task delivered by service at speed. Transit productiveness (p-km/h) captures transit work performed over time. These measures are useful to operators in understanding their services’ or systems’ capabilities and passenger quality of service. This paper accounts for variability in utilized demand by passengers along a line and high passenger load conditions where passenger pass-up delay occurs. A hypothetical case study of an individual bus service’s operation demonstrates the usefulness of passenger transmission in comparing existing and growth scenarios. A hypothetical case study of a bus line’s operation during a peak hour window demonstrates the theory’s usefulness in examining the contribution of individual services to line productive performance. Scenarios may be assessed using this theory to benchmark or compare lines and segments, conditions, or consider improvements

    Laminar flow of two miscible fluids in a simple network

    Full text link
    When a fluid comprised of multiple phases or constituents flows through a network, non-linear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of non-linear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by diffusion. This fluid system has the advantage that it is easily controlled and modeled, yet contains the key ingredients for network non-linearities. Experiments and 3D simulations are first used to explore how phases distribute at a single T-junction. Once the phase separation at a single junction is known, a network model is developed which predicts multiple equilibria in the simplest of networks. The existence of multiple stable equilibria is confirmed experimentally and a criteria for their existence is developed. The network results are generic and could be applied to or found in different physical systems

    Dry Mergers in GEMS: The Dynamical Evolution of Massive Early-Type Galaxies

    Full text link
    We have used the 28'x 28' HST image mosaic from the GEMS (Galaxy Evolution from Morphology and SEDs) survey in conjunction with the COMBO-17 photometric redshift survey to constrain the incidence of major mergers between spheroid-dominated galaxies with little cold gas (dry mergers) since z = 0.7. A set of N-body merger simulations was used to explore the morphological signatures of such interactions: they are recognizable either as < 5kpc separation close pairs or because of broad, low surface brightness tidal features and asymmetries. Data with the depth and resolution of GEMS are sensitive to dry mergers between galaxies with M_V < -20.5 for z < 0.7; dry mergers at higher redshifts are not easily recovered in single-orbit HST imaging. Six dry mergers (12 galaxies) with luminosity ratios between 1:1 and 4:1 were found from a sample of 379 red early-type galaxies with M_V < -20.5 and 0.1 < z < 0.7. The simulations suggest that the morphological signatures of dry merging are visible for ~250Myr and we use this timescale to convert the observed merger incidence into a rate. On this basis we find that present day spheroidal galaxies with M_V < -20.5 on average have undergone between 0.5 and 2 major dry mergers since z ~ 0.7. We have compared this result with the predictions of a Cold Dark Matter based semi-analytic galaxy formation model. The model reproduces the observed declining major merger fraction of bright galaxies and the space density of luminous early-type galaxies reasonably well. The predicted dry merger fraction is consistent with our observational result. Hence, hierarchical models predict and observations now show that major dry mergers are an important driver of the evolution of massive early-type galaxies in recent epochs.Comment: ApJ, in press. The paper has been extensively modified, detailing the automated+visual selection and dry merger classification. 11 pages emulateapj with 9 reduced-quality figures. A high quality copy is available at http://www.mpia-hd.mpg.de/homes/bell/papers/dry.ps.g

    Hubble Space Telescope WFPC2 Imaging of SN 1979C and Its Environment

    Get PDF
    The locations of supernovae in the local stellar and gaseous environment in galaxies contain important clues to their progenitor stars. As part of a program to study the environments of supernovae using Hubble Space Telescope (HST) imaging data, we have examined the environment of the Type II-L SN 1979C in NGC 4321 (M100). We place more rigorous constraints on the mass of the SN progenitor, which may have had a mass M \approx 17--18 M_sun. Moreover, we have recovered and measured the brightness of SN 1979C, m=23.37 in F439W (~B; m_B(max) = 11.6), 17 years after explosion. .Comment: 18 pages, 8 figures, submitted to PAS

    The Environments of Supernovae in Post-Refurbishment Hubble Space Telescope Images

    Get PDF
    The locations of supernovae in the local stellar and gaseous environment in galaxies contain important clues to their progenitor stars. Access to this information, however, has been hampered by the limited resolution achieved by ground-based observations. High spatial resolution Hubble Space Telescope (HST) images of galaxy fields in which supernovae had been observed can improve the situation considerably. We have examined the immediate environments of a few dozen supernovae using archival post-refurbishment HST images. Although our analysis is limited due to signal-to-noise ratio and filter bandpass considerations, the images allow us for the first time to resolve individual stars in, and to derive detailed color-magnitude diagrams for, several environments. We are able to place more rigorous constraints on the masses of these supernovae. A search was made for late-time emission from supernovae in the archival images, and for the progenitor stars in presupernova images of the host galaxies. We have detected SN 1986J in NGC 891 and, possibly, SN 1981K in NGC 4258. We have also identified the progenitor of the Type IIn SN 1997bs in NGC 3627. By removing younger resolved stars in the environments of SNe Ia, we can measure the colors of the unresolved stellar background and attribute these colors generally to an older, redder population. HST images ``accidentally'' caught the Type Ia SN 1994D in NGC 4526 shortly after its outburst; we measure its brightness. Finally, we add to the statistical inferences that can be made from studying the association of SNe with recent star-forming regions.Comment: 20 pages, 29 figures, to appear in A
    corecore